Characterization of synovial fluid metabolomic phenotypes of cartilage morphological changes associated with osteoarthritis

被引:67
作者
Carlson, A. K. [1 ,2 ,3 ,4 ,5 ]
Rawle, R. A. [1 ,2 ,3 ,4 ]
Wallace, C. W. [1 ,2 ,3 ,4 ]
Brooks, E. G. [1 ,2 ,3 ,4 ]
Adams, E. [1 ,2 ,3 ,4 ]
Greenwood, M. C. [1 ,2 ,3 ,4 ]
Olmer, M. [6 ]
Lotz, M. K. [6 ]
Bothner, B. [1 ,2 ,3 ,4 ]
June, R. K. [1 ,2 ,3 ,4 ]
机构
[1] Montana State Univ, Dept Mech & Ind Engn, WWAMI, Bozeman, MT 59717 USA
[2] Montana State Univ, Dept Chem & Biochem, WWAMI, Bozeman, MT 59717 USA
[3] Montana State Univ, Dept Chem & Biol Engn, WWAMI, Bozeman, MT 59717 USA
[4] Montana State Univ, Dept Math Sci, WWAMI, Bozeman, MT 59717 USA
[5] Carroll Coll, Life & Environm Sci Dept, Helena, MT 59625 USA
[6] Scripps Res Inst, Dept Mol & Expt Med, La Jolla, CA 92037 USA
关键词
Osteoarthritis; Metabolomics; Mass spectrometry; Synovial fluid; Biomarkers; Systems biology; KNEE OSTEOARTHRITIS; IDENTIFICATION; DISEASE; PAIN; GLYCOSAMINOGLYCANS; OPPORTUNITIES; TRAJECTORIES; PROGRESSION; PROFILES; AGE;
D O I
10.1016/j.joca.2019.04.007
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Objective: Osteoarthritis (OA) is a multifactorial disease with etiological heterogeneity. The objective of this study was to classify OA subgroups by generating metabolomic phenotypes from human synovial fluid. Design: Post mortem synovial fluids (n = 75) were analyzed by high performance-liquid chromatography mass spectrometry (LC-MS) to measure changes in the global metabolome. Comparisons of healthy (grade 0), early OA (grades I-II), and late OA (grades III-IV) donor populations were considered to reveal phenotypes throughout disease progression. Results: Global metabolomic profiles in synovial fluid were distinct between healthy, early OA, and late OA donors. Pathways differentially activated among these groups included structural deterioration, glycerophospholipid metabolism, inflammation, central energy metabolism, oxidative stress, and vitamin metabolism. Within disease states (early and late OA), subgroups of donors revealed distinct phenotypes. Synovial fluid metabolomic phenotypes exhibited increased inflammation (early and late OA), oxidative stress (late OA), or structural deterioration (early and late OA) in the synovial fluid. Conclusion: These results revealed distinct metabolic phenotypes in human synovial fluid, provide insight into pathogenesis, represent novel biomarkers, and can move toward developing personalized interventions for subgroups of OA patients. (C) 2019 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1174 / 1184
页数:11
相关论文
共 43 条
  • [21] Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future
    Karsdal, M. A.
    Michaelis, M.
    Ladel, C.
    Siebuhr, A. S.
    Bihlet, A. R.
    Andersen, J. R.
    Guehring, H.
    Christiansen, C.
    Bay-Jensen, A. C.
    Kraus, V. B.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2016, 24 (12) : 2013 - 2021
  • [22] OA phenotypes, rather than disease stage, drive structural progression - identification of structural progressors from 2 phase III randomized clinical studies with symptomatic knee OA
    Karsdal, M. A.
    Bihlet, A.
    Byrjalsen, I.
    Alexandersen, P.
    Ladel, C.
    Michaels, M.
    Andersen, J. R.
    Riis, B. J.
    Kraus, V.
    Bay-Jensen, A. C.
    Christiansen, C.
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2015, 23 (04) : 550 - 558
  • [23] Metabolite profiles of synovial fluid change with the radiographic severity of knee osteoarthritis
    Kim, Sooah
    Hwang, Jiwon
    Kim, Jungyeon
    Ahn, Joong Kyong
    Cha, Hoon-Suk
    Kim, Kyoung Heon
    [J]. JOINT BONE SPINE, 2017, 84 (05) : 605 - 610
  • [24] Global Metabolite Profiling of Synovial Fluid for the Specific Diagnosis of Rheumatoid Arthritis from Other Inflammatory Arthritis
    Kim, Sooah
    Hwang, Jiwon
    Xuan, Jinhua
    Jung, Young Hoon
    Cha, Hoon-Suk
    Kim, Kyoung Heon
    [J]. PLOS ONE, 2014, 9 (06):
  • [25] Kramer WC, 2011, INT J CLIN EXP MED, V4, P285
  • [26] Obesity and osteoarthritis
    Kulkarni, Kunal
    Karssiens, Timothy
    Kumar, Vijay
    Pandit, Hemant
    [J]. MATURITAS, 2016, 89 : 22 - 28
  • [27] Identification of an urinary metabolite profile associated with osteoarthritis
    Lamers, RJAN
    van Nesselrooij, JHJ
    Kraus, VB
    Jordan, JM
    Renner, JB
    Dragomir, AD
    Luta, G
    van der Greef, J
    DeGroot, J
    [J]. OSTEOARTHRITIS AND CARTILAGE, 2005, 13 (09) : 762 - 768
  • [28] ROS/oxidative stress signaling in osteoarthritis
    Lepetsos, Panagiotis
    Papavassiliou, Athanasios G.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2016, 1862 (04): : 576 - 591
  • [29] Predicting Network Activity from High Throughput Metabolomics
    Li, Shuzhao
    Park, Youngja
    Duraisingham, Sai
    Strobel, Frederick H.
    Khan, Nooruddin
    Soltow, Quinlyn A.
    Jones, Dean P.
    Pulendran, Bali
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (07)
  • [30] The Age-Related Changes in Cartilage and Osteoarthritis
    Li, YongPing
    Wei, XiaoChun
    Zhou, JingMing
    Wei, Lei
    [J]. BIOMED RESEARCH INTERNATIONAL, 2013, 2013