Some physical applications of fractional Schrodinger equation

被引:240
作者
Guo, Xiaoyi [1 ]
Xu, Mingyu [1 ]
机构
[1] Shandong Univ, Sch Math & Syst Sci, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1063/1.2235026
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The fractional Schrodinger equation is solved for a free particle and for an infinite square potential well. The fundamental solution of the Cauchy problem for a free particle, the energy levels and the normalized wave functions of a particle in a potential well are obtained. In the barrier penetration problem, the reflection coefficient and transmission coefficient of a particle from a rectangular potential wall is determined. In the quantum scattering problem, according to the fractional Schrodinger equation, the Green's function of the Lippmann-Schwinger integral equation is given. (c) 2006 American Institute of Physics.
引用
收藏
页数:9
相关论文
共 13 条
[1]  
[Anonymous], 1982, SCATTERING THEORY WA, DOI DOI 10.1007/978-3-642-88128-2
[2]  
FEYNMAN RP, 1965, QUANTUM MECH PATH IN
[3]   FOX FUNCTION REPRESENTATION OF NON-DEBYE RELAXATION PROCESSES [J].
GLOCKLE, WG ;
NONNENMACHER, TF .
JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (3-4) :741-757
[4]  
JOACHIN CJ, 1983, QUANTUM COLLISION TH
[5]   Fractals and quantum mechanics [J].
Laskin, N .
CHAOS, 2000, 10 (04) :780-790
[6]   Fractional quantum mechanics [J].
Laskin, N .
PHYSICAL REVIEW E, 2000, 62 (03) :3135-3145
[7]   Fractional Schrodinger equation [J].
Laskin, N .
PHYSICAL REVIEW E, 2002, 66 (05) :7-056108
[8]   Fractional quantum mechanics and Levy path integrals [J].
Laskin, N .
PHYSICS LETTERS A, 2000, 268 (4-6) :298-305
[9]  
LASKIN N, QUANTPH0504106
[10]  
Mandelbrot BB., 1977, FRACTAL GEOMETRY NAT