Quantum coherence sets the quantum speed limit for mixed states

被引:99
作者
Mondal, Debasis [1 ]
Datta, Chandan [2 ]
Sazim, Sk [2 ]
机构
[1] Harish Chandra Res Inst, Quantum Informat & Computat Grp, Chhatnag Rd, Allahabad, Uttar Pradesh, India
[2] Inst Phys, Sachivalaya Marg, Bhubaneswar 751005, Odisha, India
关键词
Quantum speed limit; Coherence; CPTP maps; Skew information; ENTANGLEMENT; INFORMATION; EVOLUTION; DYNAMICS; GEOMETRY;
D O I
10.1016/j.physleta.2015.12.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We cast observable measure of quantum coherence as a resource to control the quantum speed limit (QSL) for unitary evolutions. For non-unitary evolutions, QSL depends on that of the state of the system and environment together. We show that the product of the time bound and the coherence (asymmetry) or the quantum part of the uncertainty behaves in a geometric way under partial elimination and classical mixing of states. These relations give a new insight into the quantum speed limit. We also show that our bound is experimentally measurable and is tighter than various existing bounds in the literature. (c) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:689 / 695
页数:7
相关论文
共 96 条
[1]   Subspace preservation, subspace locality, and gluing of completely positive maps [J].
Åberg, J .
ANNALS OF PHYSICS, 2004, 313 (02) :326-367
[2]   Operations and single-particle interferometry -: art. no. 012103 [J].
Åberg, J .
PHYSICAL REVIEW A, 2004, 70 (01) :012103-1
[3]  
Aberg J., 2006, ARXIVQUANTPH0612146
[4]   The Wigner-Araki-Yanase theorem and the quantum resource theory of asymmetry [J].
Ahmadi, Mehdi ;
Jennings, David ;
Rudolph, Terry .
NEW JOURNAL OF PHYSICS, 2013, 15
[5]   A GEOMETRIC APPROACH TO QUANTUM-MECHANICS [J].
ANANDAN, J .
FOUNDATIONS OF PHYSICS, 1991, 21 (11) :1265-1284
[6]   Geometry of the Josephson effect [J].
Anandan, JS ;
Pati, AK .
PHYSICS LETTERS A, 1997, 231 (1-2) :29-37
[7]   Bounds to unitary evolution [J].
Andrews, Mark .
PHYSICAL REVIEW A, 2007, 75 (06)
[8]  
[Anonymous], 1945, J. Phys. USSR, DOI DOI 10.1007/978-3-642-74626-0_8
[9]   Speed limits for quantum gates in multiqubit systems [J].
Ashhab, S. ;
de Groot, P. C. ;
Nori, Franco .
PHYSICAL REVIEW A, 2012, 85 (05)
[10]  
Bartkiewicz K., 2013, PHYS REV A, V88