Detection and classification of social media-based extremist affiliations using sentiment analysis techniques

被引:95
作者
Ahmad, Shakeel [1 ]
Asghar, Muhammad Zubair [2 ]
Alotaibi, Fahad M. [3 ]
Awan, Irfanullah [4 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol Rabigh, Jeddah, Saudi Arabia
[2] Gomal Univ, Inst Comp & Informat Technol, Dera Ismail Khan, KP, Pakistan
[3] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Informat Syst, Jeddah, Saudi Arabia
[4] Univ Bradford, Dept Comp, Bradford, W Yorkshire, England
关键词
Social media; Sentiment classification; Emotions; Extremist sentiments; Terrorism; Extremist affiliations; Deep learning;
D O I
10.1186/s13673-019-0185-6
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identification and classification of extremist-related tweets is a hot issue. Extremist gangs have been involved in using social media sites like Facebook and Twitter for propagating their ideology and recruitment of individuals. This work aims at proposing a terrorism-related content analysis framework with the focus on classifying tweets into extremist and non-extremist classes. Based on user-generated social media posts on Twitter, we develop a tweet classification system using deep learning-based sentiment analysis techniques to classify the tweets as extremist or non-extremist. The experimental results are encouraging and provide a gateway for future researchers.
引用
收藏
页数:23
相关论文
共 30 条
[1]  
Acharya A., 2017, Comparative study of machine learning algorithms for heart disease prediction
[2]   Learning to Classify Hate and Extremism Promoting Tweets [J].
Agarwal, Swati ;
Sureka, Ashish .
2014 IEEE JOINT INTELLIGENCE AND SECURITY INFORMATICS CONFERENCE (JISIC), 2014, :318-318
[3]  
Asghar M.Z., 2017, INT C ELECTR MACH SY, P1, DOI DOI 10.1007/S10586-017-1096-9
[4]  
Asghar M. Z., 2019, COMPUT MATH ORGAN TH, P1, DOI DOI 10.1007/S10588-019-09292-7
[5]   T-SAF: Twitter sentiment analysis framework using a hybrid classification scheme [J].
Asghar, Muhammad Zubair ;
Kundi, Fazal Masud ;
Ahmad, Shakeel ;
Khan, Aurangzeb ;
Khan, Furqan .
EXPERT SYSTEMS, 2018, 35 (01)
[6]   RIFT: A Rule Induction Framework for Twitter Sentiment Analysis [J].
Asghar, Muhammad Zubair ;
Khan, Aurangzeb ;
Khan, Furqan ;
Kundi, Fazal Masud .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2018, 43 (02) :857-877
[7]   Lexicon-enhanced sentiment analysis framework using rule-based classification scheme [J].
Asghar, Muhammad Zubair ;
Khan, Aurangzeb ;
Ahmad, Shakeel ;
Qasim, Maria ;
Khan, Imran Ali .
PLOS ONE, 2017, 12 (02)
[8]   Deep Learning for Hate Speech Detection in Tweets [J].
Badjatiya, Pinkesh ;
Gupta, Shashank ;
Gupta, Manish ;
Varma, Vasudeva .
WWW'17 COMPANION: PROCEEDINGS OF THE 26TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, 2017, :759-760
[9]   Combining Social Network Analysis and Sentiment Analysis to Explore the Potential for Online Radicalisation [J].
Bermingham, Adam ;
Conway, Maura ;
McInerney, Lisa ;
O'Hare, Neil ;
Smeaton, Alan F. .
2009 INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, 2009, :231-+
[10]  
Chalothorn T., 2012, USING SENTIWORDNET S