The evolution of surface cleanness and electronic properties of graphene field-effect transistors during mechanical cleaning with atomic force microscopy

被引:8
作者
Park, Do-Hyun [1 ]
Cho, Young Jin [1 ]
Lee, Jun-Ho [1 ]
Choi, Inchul [1 ]
Jhang, Sung Ho [1 ]
Chung, Hyun-Jong [1 ]
机构
[1] Konkuk Univ, Dept Phys, Seoul 05030, South Korea
关键词
mobility; lateral force microscopy; mechanical cleaning; graphene; SCATTERING; LIMITS;
D O I
10.1088/1361-6528/ab2cf6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The evolution of surface cleanliness and the electronic properties-Dirac voltage(V-D(irac)), hysteresis and mobility (mu) of a graphene field-effect transistor (GFET)-were monitored by measuring lateral force microscopy and drain current (I-D) as a function of gate voltage (V-G), after mechanically cleaning the surface, scan-by-scan, with contact-mode atomic force microscopy. Both the surface cleanliness and the electronic properties evolved, showing a sudden improvement and then saturation for a mobility of around 2200 cm(2) V-1 s(-1). We found that the mobility suppression of the as-fabricated GFET deviated from a randomly distributed impurities model, which predicted a greater mobility than obtained from the measured V-D(irac). Therefore, the substrate impurities are excluded from the origins of the extraordinary suppression of the mobility, and the possible origin will be discussed.
引用
收藏
页数:6
相关论文
共 31 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[4]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[5]   Friction Anisotropy-Driven Domain Imaging on Exfoliated Monolayer Graphene [J].
Choi, Jin Sik ;
Kim, Jin-Soo ;
Byun, Ik-Su ;
Lee, Duk Hyun ;
Lee, Mi Jung ;
Park, Bae Ho ;
Lee, Changgu ;
Yoon, Duhee ;
Cheong, Hyeonsik ;
Lee, Ki Ho ;
Son, Young-Woo ;
Park, Jeong Young ;
Salmeron, Miquel .
SCIENCE, 2011, 333 (6042) :607-610
[6]   Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope [J].
Choi, Woosuk ;
Shehzad, Muhammad Arslan ;
Park, Sanghoon ;
Seo, Yongho .
RSC ADVANCES, 2017, 7 (12) :6943-6949
[7]   Direct Patterning of p-Type-Doped Few-layer WSe2 Nanoelectronic Devices by Oxidation Scanning Probe Lithography [J].
Dago, A. I. ;
Ryu, Y. K. ;
Palomares, F. J. ;
Garcia, R. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (46) :40054-40061
[8]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   One- and two-dimensional diffusion of metal atoms in graphene [J].
Gan, Yanjie ;
Sun, Litao ;
Banhart, Florian .
SMALL, 2008, 4 (05) :587-591