In-situ explosion limit analysis and hazards research of vent gas from lithium-ion battery thermal runaway

被引:50
作者
Zhang, Qingsong [1 ]
Niu, Jianghao [1 ]
Yang, Juan [2 ]
Liu, Tiantian [1 ]
Bao, Fangwei [1 ]
Wang, Qiong [3 ]
机构
[1] Civil Aviat Univ China, Key Lab Civil Aviat Thermal Hazards Prevent & Emer, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Engn Training Ctr, Tianjin 300300, Peoples R China
[3] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
基金
中国国家自然科学基金;
关键词
In-situ explosion limit; Explosion consequences; Battery vent gas; Lithium-ion batteries; State of charge; MECHANISMS; FIRE;
D O I
10.1016/j.est.2022.106146
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The explosion of thermal runaway gas of lithium-ion batteries may trigger a thermal runaway domino effect in multiple batteries. Therefore, the research on the explosion limit and explosion power of them is important to assess the danger of lithium-ion batteries. In this work, an innovative combination of gas composition analysis and in-situ detection was used to determine the BVG (battery vent gas) explosion limit of NCM 811 (LiNi0.8-Co0.1Mn0.1O2) lithium-ion batteries, which revealed that as the battery SOC (state of charge) increases, LEL (lower explosion limit) first increases and then decreases, UEL (upper explosion limit) continues to increase. It was also verified that the BVG explosion range increases as the battery SOC increases, revealed the opposite trend of the lower explosion limit with the multi-carbon chain gas fraction, and in addition, the quantification of the explosion consequences provided recommendations on the SOC values for safe storage.
引用
收藏
页数:10
相关论文
共 33 条
[1]   On the gassing behavior of lithium-ion batteries with NCM523 cathodes [J].
Berkes, Balazs B. ;
Schiele, Alexander ;
Sommer, Heino ;
Brezesinski, Torsten ;
Janek, Juergen .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (11) :2961-2967
[2]   COVID-19-induced low power demand and market forces starkly reduce CO2 emissions [J].
Bertram, Christoph ;
Luderer, Gunnar ;
Creutzig, Felix ;
Bauer, Nico ;
Ueckerdt, Falko ;
Malik, Aman ;
Edenhofer, Ottmar .
NATURE CLIMATE CHANGE, 2021, 11 (03) :193-196
[3]   Safety modelling and testing of lithium-ion batteries in electrified vehicles [J].
Deng, Jie ;
Bae, Chulheung ;
Marcicki, James ;
Masias, Alvaro ;
Miller, Theodore .
NATURE ENERGY, 2018, 3 (04) :261-266
[4]  
Faranda R.S, 2019, PCIC PARIS EUR19 32
[5]   Mitigating Thermal Runaway of Lithium-Ion Batteries [J].
Feng, Xuning ;
Ren, Dongsheng ;
He, Xiangming ;
Ouyang, Minggao .
JOULE, 2020, 4 (04) :743-770
[6]   Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database [J].
Feng, Xuning ;
Zheng, Siqi ;
Ren, Dongsheng ;
He, Xiangming ;
Wang, Li ;
Cui, Hao ;
Liu, Xiang ;
Jin, Changyong ;
Zhang, Fangshu ;
Xu, Chengshan ;
Hsu, Hungjen ;
Gao, Shang ;
Chen, Tianyu ;
Li, Yalun ;
Wang, Tianze ;
Wang, Hao ;
Li, Maogang ;
Ouyang, Minggao .
APPLIED ENERGY, 2019, 246 :53-64
[7]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[8]   Characterization of large format lithium ion battery exposed to extremely high temperature [J].
Feng, Xuning ;
Sun, Jing ;
Ouyang, Minggao ;
He, Xiangming ;
Lu, Languang ;
Han, Xuebing ;
Fang, Mou ;
Peng, Huei .
JOURNAL OF POWER SOURCES, 2014, 272 :457-467
[9]   Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes - impact of state of charge and overcharge [J].
Golubkov, Andrey W. ;
Scheikl, Sebastian ;
Planteu, Rene ;
Voitic, Gernot ;
Wiltsche, Helmar ;
Stangl, Christoph ;
Fauler, Gisela ;
Thaler, Alexander ;
Hacker, Viktor .
RSC ADVANCES, 2015, 5 (70) :57171-57186
[10]   Challenges for Rechargeable Li Batteries [J].
Goodenough, John B. ;
Kim, Youngsik .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :587-603