Quantum dots and nanowires for optoelectronic device applications

被引:0
|
作者
Gao, Q. [1 ]
Kim, Y. [1 ]
Joyce, H. J. [1 ]
Lever, P. [1 ]
Mokkapati, S. [1 ]
Buda, M. [1 ]
Tan, H. H. [1 ]
Jagadish, C. [1 ]
机构
[1] Australian Natl Univ, Dept Elect Mat Engn, Res Sch Phys & Engn, GPO Box 4, Canberra, ACT 0200, Australia
来源
ICTON 2006: 8TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, VOL 2, PROCEEDINGS: ESPC, NAON | 2006年
基金
澳大利亚研究理事会;
关键词
quantum dots; nanowire; lasers; selective area epitaxy; InGaAs;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
InGaAs quantum dots (QDs) and nanowires have been grown on GaAs by metal-organic chemical vapour deposition on GaAs (100) and (111)13 substrates, respectively. InGaAs QD lasers were fabricated and characterised. Results show ground-state lasing at about 1150 nm in devices with lengths greater than 2.5 mm. We also observed a strong influence of nanowire density on nanowire height specific to nanowires with high indium composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Selective area epitaxy for applications in quantum-dot optoelectronic device integration is also discussed in this paper.
引用
收藏
页码:242 / +
页数:2
相关论文
共 50 条
  • [41] High quantum efficiency (Al)GaAs nanowires for optoelectronic devices
    Mokkapati, S.
    Nian-Jiang
    Saxena, D.
    Tan, H. H.
    Jagadish, C.
    2014 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES, 2014, : 13 - 14
  • [42] Quantum Dots and Their Clinical Applications
    Das, Jaydeep
    Thiagarajan, Padma
    Nanoscience and Nanotechnology - Asia, 2013, 3 (01) : 95 - 101
  • [43] Quantum dots for memory applications
    Dimitrakis, P.
    Normand, P.
    Ioannou-Sougleridis, V.
    Bonafos, C.
    Schamm-Chardon, S.
    BenAssayag, G.
    Iliopoulos, E.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (08): : 1490 - 1504
  • [44] Quantum Dots for Display Applications
    Shu, Yufei
    Lin, Xing
    Qin, Haiyan
    Hu, Zhuang
    Jin, Yizheng
    Peng, Xiaogang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (50) : 22312 - 22323
  • [45] Photonic device integration using MOCVD grown quantum dots
    Mokkapati, S.
    Tan, H. H.
    Jagadish, C.
    2006 CONFERENCE ON OPTOELECTRONIC AND MICROELECTRONIC MATERIALS & DEVICES, 2006, : 53 - 54
  • [46] Thermopiezoelectric and Nonlinear Electromechanical Effects in Quantum Dots and Nanowires
    Patil, Sunil
    Bahrami-Samani, M.
    Melnik, R. V. N.
    Toropova, M.
    Zu, Jean
    PHYSICS OF SEMICONDUCTORS, 2009, 1199 : 327 - +
  • [47] Parallel-Coupled Quantum Dots in InAs Nanowires
    Nilsson, Malin
    Chen, I-Ju
    Lehmann, Sebastian
    Maulerova, Vendula
    Dick, Kimberly A.
    Thelander, Claes
    NANO LETTERS, 2017, 17 (12) : 7847 - 7852
  • [48] Quantum dots: applications in technology and in quantum physics
    Ferry, DK
    Bird, JP
    Akis, R
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 25 (2-3) : 298 - 302
  • [49] Thermally activated tunneling in porous silicon nanowires with embedded Si quantum dots
    Rezvani, S. J.
    Pinto, N.
    Enrico, E.
    D'Ortenzi, L.
    Chiodoni, A.
    Boarino, L.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (10)
  • [50] InN quantum dots on GaN nanowires grown by MOVPE
    Bi, Zhaoxia
    Lindgren, David
    Johansson, Jonas
    Ek, Martin
    Wallenberg, L. Reine
    Gustafsson, Anders
    Borgstrom, Magnus T.
    Ohlsson, B. Jonas
    Monemar, Bo
    Samuelson, Lars
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 11, NO 3-4, 2014, 11 (3-4): : 421 - 424