Meteosat Land Surface Temperature Climate Data Record: Achievable Accuracy and Potential Uncertainties

被引:85
作者
Duguay-Tetzlaff, Anke [1 ]
Bento, Virgilio A. [2 ]
Goettsche, Frank M. [3 ]
Stoeckli, Reto [1 ]
Martins, Joao P. A. [2 ,4 ]
Trigo, Isabel [2 ,4 ]
Olesen, Folke [3 ]
Bojanowski, Jedrzej S. [1 ]
da Camara, Carlos [4 ]
Kunz, Heike [1 ]
机构
[1] Fed Off Meteorol & Climatol MeteoSwiss, CH-8058 Zurich, Switzerland
[2] Univ Lisbon, Inst Dom Luiz, P-1749016 Lisbon, Portugal
[3] Karlsruhe Inst Technol, D-76344 Eggenstein Leopoldshafen, Germany
[4] Inst Portugues Mar & Atmosfera, P-1749077 Lisbon, Portugal
关键词
thermal infrared; LST; Meteosat; single channel; climate data record; radiative transfer; SPLIT-WINDOW ALGORITHM; SKIN TEMPERATURE; BRIGHTNESS TEMPERATURE; DIURNAL CYCLES; ASSIMILATION; VALIDATION; PRODUCTS; MSG/SEVIRI; MODEL;
D O I
10.3390/rs71013139
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The European Organization for the Exploitation of Meteorological Satellites' (EUMETSAT) Meteosat satellites provide the unique opportunity to compile a 30+ year land surface temperature (LST) climate data record. Since the Meteosat instrument on-board Meteosat 2-7 is equipped with a single thermal channel, single-channel LST retrieval algorithms are used to ensure consistency across Meteosat satellites. The present study compares the performance of two single-channel LST retrieval algorithms: (1) A physical radiative transfer-based mono-window (PMW); and (2) a statistical mono-window model (SMW). The performance of the single-channel algorithms is assessed using a database of synthetic radiances for a wide range of atmospheric profiles and surface variables. The two single-channel algorithms are evaluated against the commonly-used generalized split-window (GSW) model. The three algorithms are verified against more than 60,000 LST ground observations with dry to very moist atmospheres (total column water vapor (TCWV) 1-56 mm). Except for very moist atmospheres (TCWV > 45 mm), results show that Meteosat single-channel retrievals match those of the GSW algorithm by 0.1-0.5 K. This study also outlines that it is possible to put realistic uncertainties on Meteosat single-channel LSTs, except for very moist atmospheres: simulated theoretical uncertainties are within 0.3-1.0 K of the in situ root mean square differences for TCWV < 45 mm.
引用
收藏
页码:13139 / 13156
页数:18
相关论文
共 45 条
[1]  
Bento V., 2013, THESIS U LISBON
[2]  
Berk A., 1999, MODTRAN4 USERS MANUA
[3]  
Bodas-Salcedo A, 2008, J CLIMATE, V21, P4723, DOI [10.1175/2008JCLI2097.1, 10.1175/200SJCLI2097.1]
[4]  
Borbas E.E., 2005, Proceedings of the XIV. International ATOVS Study Conference, Beijing, China, University of Wisconsin-Madison, Space Science and Engineering Center, Cooperative Institute for Meteorological Satellite Studies (CIMSS), Madison, WI, P763
[5]  
Bork-Unkelbach A., 2012, THESIS KARLSRUHE I T
[6]   Skin temperature analysis and bias correction in a coupled land-atmosphere data assimilation system [J].
Bosilovich, Michael G. ;
Radakovich, Jon D. ;
da Silva, Arlindo ;
Todling, Ricardo ;
Verter, Frances .
JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2007, 85A :205-228
[7]   The ERA-Interim reanalysis: configuration and performance of the data assimilation system [J].
Dee, D. P. ;
Uppala, S. M. ;
Simmons, A. J. ;
Berrisford, P. ;
Poli, P. ;
Kobayashi, S. ;
Andrae, U. ;
Balmaseda, M. A. ;
Balsamo, G. ;
Bauer, P. ;
Bechtold, P. ;
Beljaars, A. C. M. ;
van de Berg, L. ;
Bidlot, J. ;
Bormann, N. ;
Delsol, C. ;
Dragani, R. ;
Fuentes, M. ;
Geer, A. J. ;
Haimberger, L. ;
Healy, S. B. ;
Hersbach, H. ;
Holm, E. V. ;
Isaksen, L. ;
Kallberg, P. ;
Koehler, M. ;
Matricardi, M. ;
McNally, A. P. ;
Monge-Sanz, B. M. ;
Morcrette, J. -J. ;
Park, B. -K. ;
Peubey, C. ;
de Rosnay, P. ;
Tavolato, C. ;
Thepaut, J. -N. ;
Vitart, F. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (656) :553-597
[8]   Land surface temperature from multiple geostationary satellites [J].
Freitas, Sandra C. ;
Trigo, Isabel F. ;
Macedo, Joao ;
Barroso, Carla ;
Silva, Ricardo ;
Perdigao, Rui .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (9-10) :3051-3068
[9]   Quantifying the Uncertainty of Land Surface Temperature Retrievals From SEVIRI/Meteosat [J].
Freitas, Sandra C. ;
Trigo, Isabel F. ;
Bioucas-Dias, Jose M. ;
Goettsche, Frank-M .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (01) :523-534
[10]  
Garand L, 2003, J APPL METEOROL, V42, P570, DOI 10.1175/1520-0450(2003)042<0570:TAILSS>2.0.CO