Diverse convergent evidence in the genetic analysis of complex disease: coordinating omic, informatic, and experimental evidence to better identify and validate risk factors

被引:25
作者
Ciesielski, Timothy H. [1 ,2 ]
Pendergrass, Sarah A. [3 ,4 ]
White, Marquitta J. [1 ,2 ,5 ]
Kodaman, Nuri [1 ,2 ,5 ]
Sobota, Rafal S. [1 ,2 ,5 ]
Huang, Minjun [1 ]
Bartlett, Jacquelaine [2 ]
Li, Jing [1 ]
Pan, Qinxin [1 ]
Gui, Jiang [2 ,6 ]
Selleck, Scott B. [4 ]
Amos, Christopher I. [2 ,6 ]
Ritchie, Marylyn D. [3 ,4 ]
Moore, Jason H. [1 ,2 ,6 ]
Williams, Scott M. [1 ,2 ]
机构
[1] Geisel Sch Med Dartmouth, Dept Genet, Hanover, NH 03755 USA
[2] Dartmouth Coll, Inst Quantitat Biomed Sci, Hanover, NH 03755 USA
[3] Penn State Univ, Ctr Syst Genom, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
[5] Vanderbilt Univ, Ctr Human Genet Res, Nashville, TN 37232 USA
[6] Geisel Sch Med, Sect Biostat & Epidemiol, Hanover, NH 03766 USA
关键词
Replication; Validation; Complex disease; Heterogeneity; GWAS; Omics; Type; 2; error; 1; False negatives; False positives; GENOME-WIDE ASSOCIATION; CANDIDATE GENES; REPLICATION; LOCI; MALARIA; FALSE; SCANS;
D O I
10.1186/1756-0381-7-10
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In omic research, such as genome wide association studies, researchers seek to repeat their results in other datasets to reduce false positive findings and thus provide evidence for the existence of true associations. Unfortunately this standard validation approach cannot completely eliminate false positive conclusions, and it can also mask many true associations that might otherwise advance our understanding of pathology. These issues beg the question: How can we increase the amount of knowledge gained from high throughput genetic data? To address this challenge, we present an approach that complements standard statistical validation methods by drawing attention to both potential false negative and false positive conclusions, as well as providing broad information for directing future research. The Diverse Convergent Evidence approach (DiCE) we propose integrates information from multiple sources (omics, informatics, and laboratory experiments) to estimate the strength of the available corroborating evidence supporting a given association. This process is designed to yield an evidence metric that has utility when etiologic heterogeneity, variable risk factor frequencies, and a variety of observational data imperfections might lead to false conclusions. We provide proof of principle examples in which DiCE identified strong evidence for associations that have established biological importance, when standard validation methods alone did not provide support. If used as an adjunct to standard validation methods this approach can leverage multiple distinct data types to improve genetic risk factor discovery/validation, promote effective science communication, and guide future research directions.
引用
收藏
页数:17
相关论文
共 46 条
[1]   Multiple test procedures other than Bonferroni's deserve wider use [J].
Bender, R ;
Lange, S .
BRITISH MEDICAL JOURNAL, 1999, 318 (7183) :600-601
[2]   Analysis and Prediction of Pathways in HeLa Cells by Integrating Biological Levels of Organization with Systems-Biology Approaches [J].
Carlos Higareda-Almaraz, Juan ;
Valtierra-Gutierrez, Ilse A. ;
Hernandez-Ortiz, Magdalena ;
Contreras, Sandra ;
Hernandez, Erika ;
Encarnacion, Sergio .
PLOS ONE, 2013, 8 (06)
[3]   Replicating genotype-phenotype associations [J].
Chanock, Stephen J. ;
Manolio, Teri ;
Boehnke, Michael ;
Boerwinkle, Eric ;
Hunter, David J. ;
Thomas, Gilles ;
Hirschhorn, Joel N. ;
Abecasis, Goncalo ;
Altshuler, David ;
Bailey-Wilson, Joan E. ;
Brooks, Lisa D. ;
Cardon, Lon R. ;
Daly, Mark ;
Donnelly, Peter ;
Fraumeni, Joseph F., Jr. ;
Freimer, Nelson B. ;
Gerhard, Daniela S. ;
Gunter, Chris ;
Guttmacher, Alan E. ;
Guyer, Mark S. ;
Harris, Emily L. ;
Hoh, Josephine ;
Hoover, Robert ;
Kong, C. Augustine ;
Merikangas, Kathleen R. ;
Morton, Cynthia C. ;
Palmer, Lyle J. ;
Phimister, Elizabeth G. ;
Rice, John P. ;
Roberts, Jerry ;
Rotimi, Charles ;
Tucker, Margaret A. ;
Vogan, Kyle J. ;
Wacholder, Sholom ;
Wijsman, Ellen M. ;
Winn, Deborah M. ;
Collins, Francis S. .
NATURE, 2007, 447 (7145) :655-660
[4]   Reducing the probability of false positive research findings by pre-publication validation - Experience with a large multiple sclerosis database [J].
Daumer, Martin ;
Held, Ulrike ;
Ickstadt, Katja ;
Heinz, Moritz ;
Schach, Siegfried ;
Ebers, George .
BMC MEDICAL RESEARCH METHODOLOGY, 2008, 8 (1)
[5]   Estimation of significance thresholds for genomewide association scans [J].
Dudbridge, Frank ;
Gusnanto, Arief .
GENETIC EPIDEMIOLOGY, 2008, 32 (03) :227-234
[6]  
Fisher R. A., 1992, J MINISTRY AGR GREAT, P82, DOI DOI 10.1007/978-1-4612-4380-9_8
[7]  
Fisher RA, 1950, STAT METHODS RES WOR, V80
[8]   THE INDUCTION OF TYROSINE AMINOTRANSFERASE ACTIVITY AND ITS USE AS AN INDIRECT ASSAY FOR ENDOTOXIN IN MICE INFECTED WITH PLASMODIUM-VINCKEI-PETTERI [J].
GAUCI, R ;
BENNETT, D ;
CLARK, IA ;
BRYANT, C .
INTERNATIONAL JOURNAL FOR PARASITOLOGY, 1982, 12 (04) :279-284
[9]   Interrater agreement and interrater reliability: Key concepts, approaches, and applications [J].
Gisev, Natasa ;
Bell, J. Simon ;
Chen, Timothy F. .
RESEARCH IN SOCIAL & ADMINISTRATIVE PHARMACY, 2013, 9 (03) :330-338
[10]   Finding genes that underlie complex traits [J].
Glazier, AM ;
Nadeau, JH ;
Aitman, TJ .
SCIENCE, 2002, 298 (5602) :2345-2349