Oxygen-deficient 3D-ordered multistage porous interfacial catalysts with enhanced water oxidation performance

被引:36
作者
Wang, Xuemin [1 ,2 ,3 ]
Liu, Ming [1 ]
Yu, Haochen [1 ,2 ,3 ]
Zhang, Hang [1 ,2 ,3 ]
Yan, Sihao [1 ,2 ,3 ]
Zhang, Cui [1 ,2 ,3 ]
Liu, Shuangxi [1 ,2 ,3 ]
机构
[1] Nankai Univ, Inst New Catalyt Mat Sci, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[2] Nankai Univ, Natl Inst Adv Mat, Tianjin 300350, Peoples R China
[3] Tianjin Collaborat Innovat Ctr Chem & Chem Engn, Tianjin 300350, Peoples R China
关键词
REDUCTION; NANOPARTICLES; VACANCIES; CARBON;
D O I
10.1039/d0ta08460c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Constructing ordered multistage pore structures and controllable defects is accepted as an effective strategy to optimize the activity and stability of catalysts, but it is still restricted by synthesis technology. Herein, an advanced highly-quality 3D-ordered macro-/mesoporous Co3O4/CeO2 heterostructure catalyst (3DOM-Co3O4/CeO2) was developed by combining two kinds of metal oxides with special intrinsic characteristics via a simple strategy. The as-prepared 3DOM-Co3O4/CeO2 shows ordered multistage interconnected mesoporous channels, which provide a sizable electrochemical active area and enrich the oxygen vacancy (OV) concentration at the Co3O4 and CeO2 interface. As expected, 3DOM-Co3O4/CeO2 with the optimal ratio of Co/Ce (3DOM-CC-10) exhibits a satisfactory catalytic activity and remarkable cycling performance when evaluated as an anode material for the oxygen evolution reaction (OER). The superior OER performance of 3DOM-CC-10 can be attributed to its structure with many OVs, the synergy effect between the two kinds of metal oxides and the 3D-ordered multistage porous conductive networks.
引用
收藏
页码:22886 / 22892
页数:7
相关论文
共 40 条
[31]  
Xu HJ, 2018, ANGEW CHEM INT EDIT, V57, P8654, DOI [10.1002/adma.201808167, 10.1002/anie.201804673]
[32]  
Xu L., 2016, ANGEW CHEM, V128, P5363, DOI [DOI 10.1002/ange.201600687, 10.1002/ange.201600687, DOI 10.1002/ANGE.201600687]
[33]   Porous cobalt oxide nanoplates enriched with oxygen vacancies for oxygen evolution reaction [J].
Xu, Wenjing ;
Lyu, Fenglei ;
Bai, Yaocai ;
Gao, Aiqin ;
Feng, Ji ;
Cai, Zhixiong ;
Yin, Yadong .
NANO ENERGY, 2018, 43 :110-116
[34]   Defect Chemistry of Nonprecious-Metal Electrocatalysts for Oxygen Reactions [J].
Yan, Dafeng ;
Li, Yunxiao ;
Huo, Jia ;
Chen, Ru ;
Dai, Liming ;
Wang, Shuangyin .
ADVANCED MATERIALS, 2017, 29 (48)
[35]   Probing the active sites of Co3O4 for the acidic oxygen evolution reaction by modulating the Co2+/Co3+ ratio [J].
Yan, Kai-Li ;
Qin, Jun-Feng ;
Lin, Jia-Hui ;
Dong, Bin ;
Chi, Jing-Qi ;
Liu, Zi-Zhang ;
Dai, Fang-Na ;
Chai, Yong-Ming ;
Liu, Chen-Guang .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) :5678-5686
[36]   Electronic Redistribution: Construction and Modulation of Interface Engineering on CoP for Enhancing Overall Water Splitting [J].
Yang, Lei ;
Liu, Ruiming ;
Jiao, Lifang .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (14)
[37]   Novel three-dimensionally ordered macroporous SrTiO3 photocatalysts with remarkably enhanced hydrogen production performance [J].
Yu, Kai ;
Zhang, Chenxi ;
Chang, Yue ;
Feng, Yajun ;
Yang, Zequn ;
Yang, Ting ;
Lou, Lan-Lan ;
Liu, Shuangxi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 200 :514-520
[38]   Disordering the Atomic Structure of Co(II) Oxide via B-Doping: An Efficient Oxygen Vacancy Introduction Approach for High Oxygen Evolution Reaction Electrocatalysts [J].
Zhang, Kai ;
Zhang, Gong ;
Qu, Jiuhui ;
Liu, Huijuan .
SMALL, 2018, 14 (41)
[39]   Metal Atom-Doped Co3O4Hierarchical Nanoplates for Electrocatalytic Oxygen Evolution [J].
Zhang, Song Lin ;
Guan, Bu Yuan ;
Lu, Xue Feng ;
Xi, Shibo ;
Du, Yonghua ;
Lou, Xiong Wen .
ADVANCED MATERIALS, 2020, 32 (31)
[40]   Valence Engineering via Dual-Cation and Boron Doping in Pyrite Selenide for Highly Efficient Oxygen Evolution [J].
Zuo, Yunpeng ;
Rao, Dewei ;
Ma, Sainan ;
Li, Tingting ;
Tsang, Yuen Hong ;
Kment, Stepan ;
Chai, Yang .
ACS NANO, 2019, 13 (10) :11469-11476