Thin monodromy in Sp(4)

被引:27
|
作者
Brav, Christopher [1 ]
Thomas, Hugh [2 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX1 3LB, England
[2] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Dwork family; monodromy; thin groups; ping-pong lemma;
D O I
10.1112/S0010437X13007550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that some hypergeometric monodromy groups in Sp(4, Z) split as free or amalgamated products and hence by cohomological considerations give examples of Zariski dense, non-arithmetic monodromy groups of real rank 2. In particular, we show that the monodromy group of the natural quotient of the Dwork family of quintic threefolds in P-4 splits as Z * Z/5Z. As a consequence, for a smooth quintic threefold X we show that the group of autoequivalences D-b(X) generated by the spherical twist along Ox and by tensoring with O-X(1) is an Artin group of dihedral type.
引用
收藏
页码:333 / 343
页数:11
相关论文
共 50 条
  • [41] Monodromy of triple point line arrangements
    Dimca, Alexandru
    SINGULARITIES IN GEOMETRY AND TOPOLOGY 2011, 2015, 66 : 71 - 80
  • [42] On an equivariant analogue of the monodromy zeta function
    S. M. Gusein-Zade
    Functional Analysis and Its Applications, 2013, 47 : 14 - 20
  • [43] A combinatorial description of the monodromy of log curves
    Chiarellotto, Bruno
    Gatti, Pietro
    ANNALES MATHEMATIQUES DU QUEBEC, 2021, 45 (01): : 161 - 184
  • [44] A combinatorial description of the monodromy of log curves
    Bruno Chiarellotto
    Pietro Gatti
    Annales mathématiques du Québec, 2021, 45 : 161 - 184
  • [45] DEFORMATIONS OF POLYNOMIALS, BOUNDARY SINGULARITIES AND MONODROMY
    Siersma, Dirk
    Tibar, Mihai
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (02) : 661 - 679
  • [46] ON THE MONODROMY GROUP OF CONFLUENT LINEAR EQUATIONS
    Glutsyuk, Alexey
    MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (01) : 67 - 90
  • [47] Geometric Monodromy around the Tropical Limit
    Yamamoto, Yuto
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016, 12
  • [48] Fractional monodromy in the 1:-2 resonance
    Efstathiou, K.
    Cushman, R. H.
    Sadovskii, D. A.
    ADVANCES IN MATHEMATICS, 2007, 209 (01) : 241 - 273
  • [49] INTERSECTION COHOMOLOGY, MONODROMY AND THE MILNOR FIBER
    Massey, David B.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (04) : 491 - 507
  • [50] On the Monodromy of Milnor Fibers of Hyperplane Arrangements
    Bailet, Pauline
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (04): : 697 - 707