Maximal function on generalized martingale Lebesgue spaces with variable exponent

被引:34
作者
Nakai, Eiichi [1 ]
Sadasue, Gaku [2 ]
机构
[1] Ibaraki Univ, Dept Math, Mito, Ibaraki 3108512, Japan
[2] Osaka Kyoiku Univ, Dept Math, Kashiwara, Osaka 5828582, Japan
基金
日本学术振兴会;
关键词
Martingale; Maximal function; Lebesgue space with variable exponent; Bounded mean oscillation; Pointwise multiplier; L-P SPACES;
D O I
10.1016/j.spl.2013.06.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the boundedness of the maximal operator for martingales on generalized Lebesgue spaces with variable exponent over probability spaces. We consider pointwise multipliers on martingale BMO as the variable exponent. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2168 / 2171
页数:4
相关论文
共 10 条
[1]   Lebesgue spaces with variable exponent on a probability space (vol 39, pg 207, 2009) [J].
Aoyama, Hiroyuki .
HIROSHIMA MATHEMATICAL JOURNAL, 2010, 40 (02) :269-269
[2]   Lebesgue spaces with variable exponent on a probability space [J].
Aoyama, Hiroyuki .
HIROSHIMA MATHEMATICAL JOURNAL, 2009, 39 (02) :207-216
[3]  
Cruz-Uribe D, 2006, ANN ACAD SCI FENN-M, V31, P239
[4]  
Diening L, 2004, MATH INEQUAL APPL, V7, P245
[5]  
Izumisawa M., 1977, TOHOKU MATH J, V29, P115
[6]   ON FUNCTIONS OF BOUNDED MEAN OSCILLATION [J].
JOHN, F ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1961, 14 (03) :415-&
[7]   Some remarks on the Hardy-Littlewood maximal function on variable Lp spaces [J].
Lerner, AK .
MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (03) :509-521
[8]  
Long R., 1993, MARTINGALE SPACES IN
[9]  
Nakai E., 2013, PREPRINT
[10]   Martingale Morrey-Campanato Spaces and Fractional Integrals [J].
Nakai, Eiichi ;
Sadasue, Gaku .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,