Interlineation and interflation functions of many variables (blending function interpolation) and economical algorithms in the approximation theory

被引:0
作者
Lytvyn, Oleg N. [1 ]
机构
[1] Ukrainian Engn Pedag Acad, Dept Appl Math, UA-61003 Kharkov, Ukraine
来源
Computational Methods, Pts 1 and 2 | 2006年
关键词
interpolation; interlineation; interflation; blending function interpolation;
D O I
10.1007/978-1-4020-3953-9_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interflation of the function f(x(1),..., x(n)) of the n variables with help of the its traces (and traces of its derivatives of order <= N) on the M surfaces the dimension m is recovery (possible, exactly) f If m = 0 this is interpolation on M points (for n >= 1). If m = I (for n >= 2) it is interlineation (blending function interpolation) on M lines. In this paper the review of last achievements and some applications interflation, interlineation functions and blending approximation functions for construction the economical algorithms in the approximation theory is given.
引用
收藏
页码:1105 / 1109
页数:5
相关论文
共 1 条
[1]  
Lytvyn, 2002, INTERLINEATION FUNCT