On the density of states of the one dimensional quasi-periodic Schrodinger operators

被引:2
作者
Amor, Sana Hadj [1 ]
机构
[1] Univ Paris 07, Dept Math, F-75013 Paris, France
关键词
D O I
10.1016/j.crma.2006.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two results on the density of states of the discrete one dimensional quasi-periodic Schrodinger equation with an analytic potential and Diophantine frequencies in the perturbed regime. On the one hand, we prove that this function has the behavior of a Holder-1/2 function. On the other, we show that the length of the gaps has a sub-exponential estimate which depends on its label given by the gap-labeling theorem.
引用
收藏
页码:423 / 426
页数:4
相关论文
共 8 条
[1]   A METAL-INSULATOR-TRANSITION FOR THE ALMOST MATHIEU MODEL [J].
BELLISSARD, J ;
LIMA, R ;
TESTARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (02) :207-234
[2]   Holder regularity of integrated density of states for the Almost Mathieu operator in a perturbative regime [J].
Bourgain, J .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 51 (02) :83-118
[3]   THE ROTATION NUMBER FOR FINITE-DIFFERENCE OPERATORS AND ITS PROPERTIES [J].
DELYON, F ;
SOUILLARD, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (03) :415-426
[4]  
Dinaburg EI., 1975, Funct. Anal. Appl, V9, P8
[5]  
Eliasson L.H., 2001, P S PURE MATH, V69, P679
[6]   FLOQUET SOLUTIONS FOR THE 1-DIMENSIONAL QUASI-PERIODIC SCHRODINGER-EQUATION [J].
ELIASSON, LH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (03) :447-482
[7]  
KRIKORIAN R, 1999, ASTERISQUE, V259
[8]  
Sinai Ja.G., 1985, FUNKTSIONAL ANAL PRI, V19, P34