A lower bound for sums of eigenvalues of the Laplacian

被引:60
作者
Melas, AD [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
关键词
D O I
10.1090/S0002-9939-02-06834-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let lambda(k)(Omega) be the kth Dirichlet eigenvalue of a bounded domain Omega in R-n. According to Weyl's asymptotic formula we have lambda(k)(Omega) similar to C-n (k/V(Omega))(2/n). The optimal in view of this asymptotic relation lower estimate for the sums Sigma(j=1)(k)lambda(j)(Omega) has been proven by P. Li and S. T. Yau ( Comm. Math. Phys. 88 ( 1983), 309-318). Here we will improve this estimate by adding to its right-hand side a term of the order of k that depends on the ratio of the volume to the moment of inertia of Omega.
引用
收藏
页码:631 / 636
页数:6
相关论文
共 6 条
[1]   ESTIMATES FOR SUMS OF EIGENVALUES OF THE LAPLACIAN [J].
KROGER, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 126 (01) :217-227
[2]   ON THE SCHRODINGER-EQUATION AND THE EIGENVALUE PROBLEM [J].
LI, P ;
YAU, ST .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (03) :309-318
[3]  
Lieb E. H., 1980, Proc. Sympos. Pure Math., V36, P241
[4]  
Polya G., 1961, Proc. London Math. Soc., V3, P419, DOI [DOI 10.1112/PLMS/S3-11.1.419, 10.1112/plms/s3-11.1.419]
[5]   ANALYSIS WITH WEAK TRACE IDEALS AND NUMBER OF BOUND-STATES OF SCHRODINGER OPERATORS [J].
SIMON, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 224 (02) :367-380
[6]   Estimates for sums of eigenvalues for domains in homogeneous spaces [J].
Strichartz, RS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) :152-190