PULLBACK ATTRACTORS FOR NON-AUTONOMOUS EVOLUTION EQUATIONS WITH SPATIALLY VARIABLE EXPONENTS

被引:27
作者
Kloeden, Peter E. [1 ,2 ]
Simsen, Jacson [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Goethe Univ Frankfurt, Inst Math, D-60054 Frankfurt, Germany
[3] Univ Fed Itajuba, Inst Matemat & Comp, BR-37500903 Itajuba, MG, Brazil
关键词
Non-autonomous parabolic problems; variable exponents; pullback attractors; upper semicontinuity; UPPER SEMICONTINUITY; PARABOLIC EQUATIONS; EXISTENCE; BEHAVIOR; FLOW;
D O I
10.3934/cpaa.2014.13.2543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Dissipative problems in electrorheological fluids, porous media and image processing often involve spatially dependent exponents. They also include time-dependent terms as in equation partial derivative u lambda/partial derivative t (t) - div (D-lambda (t)vertical bar del u(lambda)(t)vertical bar(p(x)-2)del u(lambda)(t)) + vertical bar u(lambda)(t)vertical bar(p(x)-2)u(lambda)(t) - B(t, u(lambda)(t)) on a bounded smooth domain Omega in R-n, n >= 1, with a homogeneous Neumann boundary condition, where the exponent p(.) is an element of C((Omega) over bar, R+) satisfying p(-) := min p(x) > 2, and lambda is an element of [0, infinity) is a parameter. The existence and upper semicontinuity of pullback attractors are established for this equation under the assumptions, amongst others, that B is globally Lipschitz in its second variable and D-lambda is an element of L-infinity ([tau, T] x Omega, R+) is bounded from above and below, is monotonically nonincreasing in time and continuous in the parameter lambda. The global existence and uniqueness of strong solutions is obtained through results of Yotsutani.
引用
收藏
页码:2543 / 2557
页数:15
相关论文
共 39 条
  • [1] New diffusion models in image processing
    Aboulaich, R.
    Meskine, D.
    Souissi, A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) : 874 - 882
  • [2] AKAGI G, 2011, DISCRETE CONT S SEP, P22
  • [3] Nonlinear diffusion equations driven by the p(•)-Laplacian
    Akagi, Goro
    Matsuura, Kei
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (01): : 37 - 64
  • [4] Nonlinear flow through double porosity media in variable exponent Sobolev spaces
    Amaziane, B.
    Pankratov, L.
    Piatnitski, A.
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2521 - 2530
  • [5] [Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
  • [6] ANISOTROPIC PARABOLIC EQUATIONS WITH VARIABLE NONLINEARITY
    Antontsev, S.
    Shmarev, S.
    [J]. PUBLICACIONS MATEMATIQUES, 2009, 53 (02) : 355 - 399
  • [7] Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity
    Antontsev S.N.
    Shmarev S.I.
    [J]. Journal of Mathematical Sciences, 2008, 150 (5) : 2289 - 2301
  • [8] A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions
    Antontsev, SN
    Shmarev, SI
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) : 515 - 545
  • [9] Barbu V, 1976, Nonlinear Semigroups and Differential Equations in Banach Spaces, Editura Academiei Republicii Socialiste Romania
  • [10] Perturbation of a nonautonomous problem in Rn
    Capelato, E.
    Schiabel-Silva, K.
    Silva, R. P.
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (12) : 1625 - 1630