Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects

被引:48
作者
Hu, Hong-Kang [1 ,2 ]
Sun, Shuai [1 ,2 ]
Lin, Hui-Zu [1 ,2 ]
Jiang, Liang [1 ,2 ]
Liu, Wei-Tao [1 ,2 ]
机构
[1] Natl Univ Def Technol, Coll Liberal Arts & Sci, Dept Phys, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Interdisciplinary Ctr Quantum Informat, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
MICROSCOPY;
D O I
10.1364/OE.412597
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ghost imaging (GI) usually requires a large number of samplings, which limit the performance especially when dealing with moving objects. We investigated a deep learning method for GI, and the results show that it can enhance the quality of images with the sampling rate even down to 3.7%. With a convolutional denoising auto-encoder network trained with numerical data, blurry images from few samplings can be denoised. Then those outputs are used to reconstruct both the trajectory and clear image of the moving object via cross-correlation based GI, with the number of required samplings reduced by two-thirds. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:37284 / 37293
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 2008, P 25 INT C MACH LEAR, DOI DOI 10.1145/1390156.1390294
[2]   Photon-sparse microscopy: visible light imaging using infrared illumination [J].
Aspden, Reuben S. ;
Gemmell, Nathan R. ;
Morris, Peter A. ;
Tasca, Daniel S. ;
Mertens, Lena ;
Tanner, Michael G. ;
Kirkwood, Robert A. ;
Ruggeri, Alessandro ;
Tosi, Alberto ;
Boyd, Robert W. ;
Buller, Gerald S. ;
Hadfield, Robert H. ;
Padgett, Miles J. .
OPTICA, 2015, 2 (12) :1049-1052
[3]   EPR-based ghost imaging using a single-photon-sensitive camera [J].
Aspden, Reuben S. ;
Tasca, Daniel S. ;
Boyd, Robert W. ;
Padgett, Miles J. .
NEW JOURNAL OF PHYSICS, 2013, 15
[4]   Ghost imaging with a single detector [J].
Bromberg, Yaron ;
Katz, Ori ;
Silberberg, Yaron .
PHYSICAL REVIEW A, 2009, 79 (05)
[5]   Optimization of thermal ghost imaging: high-order correlations vs. background subtraction [J].
Chan, Kam Wai C. ;
O'Sullivan, Malcolm N. ;
Boyd, Robert W. .
OPTICS EXPRESS, 2010, 18 (06) :5562-5573
[6]   Incoherent coincidence imaging and its applicability in x-ray diffraction [J].
Cheng, J ;
Han, SS .
PHYSICAL REVIEW LETTERS, 2004, 92 (09) :093903-1
[7]   Differential Ghost Imaging [J].
Ferri, F. ;
Magatti, D. ;
Lugiato, L. A. ;
Gatti, A. .
PHYSICAL REVIEW LETTERS, 2010, 104 (25)
[8]   Three-dimensional ghost imaging lidar via sparsity constraint [J].
Gong, Wenlin ;
Zhao, Chengqiang ;
Yu, Hong ;
Chen, Mingliang ;
Xu, Wendong ;
Han, Shensheng .
SCIENTIFIC REPORTS, 2016, 6
[9]   Ghost Imaging Based on Deep Learning [J].
He, Yuchen ;
Wang, Gao ;
Dong, Guoxiang ;
Zhu, Shitao ;
Chen, Hui ;
Zhang, Anxue ;
Xu, Zhuo .
SCIENTIFIC REPORTS, 2018, 8
[10]   Lensless ghost imaging for moving objects [J].
Li, Hu ;
Xiong, Jin ;
Zeng, Guihua .
OPTICAL ENGINEERING, 2011, 50 (12)