On the structure of discrete spectrum of a non-selfadjoint system of differential equations with integral boundary condition

被引:1
作者
Yardimci, Seyhmus [1 ]
Arpat, Esra Kir [2 ]
Can, Cagla [3 ]
机构
[1] Ankara Univ, Dept Math, Fac Sci, TR-06100 Ankara, Turkey
[2] Gazi Univ, Dept Math, Fac Sci, TR-06500 Ankara, Turkey
[3] Ankara Univ, Grad Sch Nat & Appl Sci, Dept Math, Irfan Bastug St, TR-06110 Ankara, Turkey
关键词
Spectrum; Spectral singularities; Non-selfadjoint system of differential equations; VANISHED PHASE-LAG; PREDICTOR-CORRECTOR METHOD; KUTTA-NYSTROM METHOD; P-STABLE METHOD; NUMERICAL-SOLUTION; EFFICIENT INTEGRATION; SCHRODINGER-EQUATION; 4-STEP METHODS; ORDER; FAMILY;
D O I
10.1007/s10910-017-0737-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we investigated the spectrum of the operator generated in Hilbert Space of vector-valued functions L-2(R+, C-2) by the system iy(1)'(x, lambda + q(1)(x)y(2)(x, lambda) = lambda y(1)(x, lambda) -iy(2)'(x, lambda + q(2)(x)y(1)(x, lambda) = lambda y(2)(x, lambda), x is an element of R+ := (0, infinity), and the integral boundary condition of the type integral(infinity)(0) K(x,t)y(t,lambda)dt + alpha y(2)(0,lambda) - beta y(1)(0, lambda) = 0 where. is a complex parameter, q(i), i = 1, 2 are complex-valued functions and alpha, beta is an element of C. K(x,t) is vector fuction such that K(x, t) = (K-1(x, t), K-2(x, t)), K-i (x, t) is an element of L-1(0, infinity) boolean AND L-2(0, lambda), i = 1, 2. Under the condition vertical bar qi (x)vertical bar <= ce(-epsilon) (root x), c > 0, epsilon > 0, i = 1, 2 we proved that L(lambda) has a finite number of eigenvalues and spectral singularities with finite multiplicities.
引用
收藏
页码:1202 / 1212
页数:11
相关论文
共 39 条
  • [1] Akin O., 1995, J KOREAN MATH SOC, V32, P401
  • [2] A new family of symmetric linear four-step methods for the efficient integration of the Schrodinger equation and related oscillatory problems
    Alolyan, I.
    Anastassi, Z. A.
    Simos, T. E.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5370 - 5382
  • [3] A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrodinger equation
    Alolyan, Ibraheem
    Simos, T. E.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (10) : 3756 - 3774
  • [4] A parametric symmetric linear four-step method for the efficient integration of the Schrodinger equation and related oscillatory problems
    Anastassi, Z. A.
    Simos, T. E.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (16) : 3880 - 3889
  • [5] Hui F, 2016, APPL COMPUT MATH-BAK, V15, P220
  • [6] A new approach on the construction of trigonometrically fitted two step hybrid methods
    Kalogiratou, Z.
    Monovasilis, Th.
    Ramos, Higinio
    Simos, T. E.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 303 : 146 - 155
  • [7] New modified Runge-Kutta-Nystrom methods for the numerical integration of the Schrodinger equation
    Kalogiratou, Z.
    Monovasilis, Th.
    Simos, T. E.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (06) : 1639 - 1647
  • [8] Kemp R., 1958, CAN J MATH, V10, P447
  • [9] Construction of an optimized explicit Runge-Kutta-Nystrom method for the numerical solution of oscillatory initial value problems
    Kosti, A. A.
    Anastassi, Z. A.
    Simos, T. E.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 61 (11) : 3381 - 3390
  • [10] Krall A.M., 1965, SOC MATH DOKL, V165, P1235