On the Smarandache function

被引:0
作者
Wang Yongxing [1 ]
机构
[1] Weinan Teachers Coll, Dept Math, Weinan, Shaanxi, Peoples R China
来源
Research on Smarandache Problems in Number Theory (Vol II), Proceedings | 2005年
关键词
Smarandache function; mean value; asymptotic formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any positive integer n, let S(n) denotes the Smarandache function. In this paper, we study the mean value properties of S(n)/n, and give an interesting asymptotic formula for it.
引用
收藏
页码:103 / 106
页数:4
相关论文
共 50 条
[31]   On a sum involving the number of distinct prime factors function related to the integer part function [J].
Bouderbala, Mihoub ;
Karras, Meselem .
NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (04) :52-56
[32]   On a sum involving the divisor function [J].
Ma, Jing ;
Sun, Huayan .
PERIODICA MATHEMATICA HUNGARICA, 2021, 83 (02) :185-191
[33]   On a sum involving the Euler function [J].
Zhai, Wenguang .
JOURNAL OF NUMBER THEORY, 2020, 211 :199-219
[34]   On a sum involving the divisor function [J].
Jing Ma ;
Huayan Sun .
Periodica Mathematica Hungarica, 2021, 83 :185-191
[35]   On a sum involving the Mangoldt function [J].
Jing Ma ;
Jie Wu .
Periodica Mathematica Hungarica, 2021, 83 :39-48
[36]   Pillai's generalized function [J].
Dadayan Z.Y. .
Journal of Mathematical Sciences, 2013, 192 (4) :377-388
[37]   On an inequality concerning the Smarandche function [J].
Le, MH .
SMARANDACHE NOTIONS, VOL 12, 2001, 12 :234-235
[38]   On the square complements function of n! [J].
Fu Ruiqin ;
Yang Hai .
Research on Smarandache Problems in Number Theory (Vol II), Proceedings, 2005, :99-101
[39]   On the kth root partition function [J].
Li, Ya-Li ;
Wu, Jie .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2021, 17 (09) :2071-2085
[40]   On a sum involving the Mangoldt function [J].
Ma, Jing ;
Wu, Jie .
PERIODICA MATHEMATICA HUNGARICA, 2021, 83 (01) :39-48