Size-, Shape-, and Dimensionality-Dependent Melting Temperatures of Nanocrystals

被引:116
作者
Lu, H. M. [1 ]
Li, P. Y. [1 ]
Cao, Z. H. [1 ]
Meng, X. K. [1 ]
机构
[1] Nanjing Univ, Dept Mat Sci & Engn, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
THERMODYNAMIC PROPERTIES; THERMAL-STABILITY; COHESIVE ENERGY; SMALL PARTICLES; THIN; POINT; NANOPARTICLES; NANOCLUSTERS;
D O I
10.1021/jp900314q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
On the basis of a model for size-dependent cohesive, energy, the size, shape, and dimensionality effects on melting temperatures of nanocrystals are modeled in a unified form. The model predicts that the melting temperature T-m(D,d,lambda) decreases with reducing size D and dimensionality d or increasing shape factor lambda. For nanoparticles with the same D values, there is T-m(icosahedron) > T-m(sphere or cube) > T-m(octahedron) > T-m(tetrahedron). Moreover, the ratio of depression of T-m(D,d,lambda) is about 1:2 lambda(wire):3 lambda(particle) for thin films, nanowires, and nanoparticles when D is large enough, for example, 6 nm. The model is found to be in accordance with available experimental, MD simulation, and other theoretical results for An, Ag, Ni, Ar, Si, Pb, and In nanocrystals.
引用
收藏
页码:7598 / 7602
页数:5
相关论文
共 53 条
[31]   Size effect on the thermodynamic properties of silver nanoparticles [J].
Luo, Wenhua ;
Hu, Wangyu ;
Xiao, Shifang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (07) :2359-2369
[32]   Liquid-drop model for the size-dependent melting of low-dimensional systems [J].
Nanda, KK ;
Sahu, SN ;
Behera, SN .
PHYSICAL REVIEW A, 2002, 66 (01) :132081-132088
[33]  
Pawlow P, 1910, Z PHYS CHEM-STOCH VE, V65, P1
[34]   FORMATION PROCESSES OF VACUUM-DEPOSITED INDIUM FILMS AND THERMODYNAMICAL PROPERTIES OF SUBMICROSCOPIC PARTICLES OBSERVED BY IN SITU ELECTRON MICROSCOPY [J].
POCZA, JF ;
BARNA, A ;
BARNA, PB .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY, 1969, 6 (04) :472-&
[35]   Size and shape dependent melting temperature of metallic nanoparticles [J].
Qi, WH ;
Wang, MP .
MATERIALS CHEMISTRY AND PHYSICS, 2004, 88 (2-3) :280-284
[36]   Melting and crystallization in Ni nanoclusters:: The mesoscale regime [J].
Qi, Y ;
Çagin, T ;
Johnson, WL ;
Goddard, WA .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (01) :385-394
[37]   Melting and evaporation of argon clusters [J].
Rytkonen, A ;
Valkealahti, S ;
Manninen, M .
JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (05) :1888-1892
[38]   Modeling the melting temperature of nanoparticles by an analytical approach [J].
Safaei, A. ;
Shandiz, M. Attarian ;
Sanjabi, S. ;
Barber, Z. H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (01) :99-105
[39]   Modeling size dependence of melting temperature of metallic nanoparticles [J].
Shandiz, M. Attarian ;
Safaei, A. ;
Sanjabi, S. ;
Barber, Z. H. .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2007, 68 (07) :1396-1399
[40]   Structural deformation, melting point and lattice parameter studies of size selected silver clusters [J].
Shyjumon, I ;
Gopinadhan, M ;
Ivanova, O ;
Quaasz, M ;
Wulff, H ;
Helm, CA ;
Hippler, R .
EUROPEAN PHYSICAL JOURNAL D, 2006, 37 (03) :409-415