Room-Temperature Operation of 2.4 μm InGaAsSb/AlGaAsSb Quantum-Well Laser Diodes with Low-Threshold Current Density

被引:19
作者
Xing Jun-Liang [1 ]
Zhang Yu [1 ]
Liao Yong-Ping [1 ]
Wang Juan [1 ]
Xiang Wei [1 ]
Xu Ying-Qiang [1 ]
Wang Guo-Wei [1 ]
Ren Zheng-Wei [1 ]
Niu Zhi-Chuan [1 ]
机构
[1] Chinese Acad Sci, Inst Semicond, State Key Lab Superlattices & Microstruct, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
CONTINUOUS-WAVE OPERATION; OUTPUT POWER;
D O I
10.1088/0256-307X/31/5/054204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
GaSb-based 2.4 mu m InGaAsSb/AlGaAsSb type-I quantum-well laser diode is fabricated. The laser is designed consisting of three In0.35Ga0.65As0.1Sb0.9/Al0.35Ga0.65As0.02Sb0.98 quantum wells with 1% compressive strain located in the central part of an undoped Al0.35Ga0.65As0.02Sb0.98 waveguide layer. The output power of the laser with a 50-mu m-wide 1-mm-long cavity is 28 mW, and the threshold current density is 400 A/cm(2) under continuous wave operation mode at room temperature.
引用
收藏
页数:3
相关论文
共 15 条
[1]   Continuous wave operated 3.2 μm type-I quantum-well diode lasers with the quinary waveguide layer [J].
Belenky, G. ;
Shterengas, L. ;
Wang, D. ;
Kipshidze, G. ;
Vorobjev, L. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2009, 24 (11)
[2]   Type-I Diode Lasers for Spectral Region Above 3 μm [J].
Belenky, Gregory ;
Shterengas, Leon ;
Kipshidze, Gela ;
Hosoda, Takashi .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (05) :1426-1434
[3]   Effect of Quantum Well Compressive Strain Above 1% On Differential Gain and Threshold Current Density in Type-I GaSb-Based Diode Lasers [J].
Chen, Jianfeng ;
Donetsky, Dmitry ;
Shterengas, Leon ;
Kisin, Mikhail V. ;
Kipshidze, Gela ;
Beleaky, Gregory .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2008, 44 (11-12) :1204-1210
[4]   2.3 μm type-I quantum well GalnAsSb/AlGaAsSb/GaSb laser diodes with quasi-CW output power of 1.4W [J].
Donetsky, D. ;
Kipshidze, G. ;
Shterengas, L. ;
Hosoda, T. ;
Belenky, G. .
ELECTRONICS LETTERS, 2007, 43 (15) :810-812
[5]   2.3-2.7-μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers [J].
Garbuzov, DZ ;
Lee, H ;
Khalfin, V ;
Martinelli, R ;
Connolly, JC ;
Belenky, GL .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (07) :794-796
[6]   4 W quasi-continuous-wave output power from 2 mu m AlGaAsSb/InGaAsSb single-quantum-well broadened waveguide laser diodes [J].
Garbuzov, DZ ;
Martinelli, RU ;
Lee, H ;
Menna, RJ ;
York, PK ;
DiMarco, LA ;
Harvey, MG ;
Matarese, RJ ;
Narayan, SY ;
Connolly, JC .
APPLIED PHYSICS LETTERS, 1997, 70 (22) :2931-2933
[7]   Single-mode 2.4 μm InGaAsSb/AlGaAsSb distributed feedback lasers for gas sensing [J].
Gupta, J. A. ;
Barrios, P. J. ;
Lapointe, J. ;
Aers, G. C. ;
Storey, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (04)
[8]   Type-I GaSb-Based Laser Diodes Operating in 3.1-to 3.3-μm Wavelength Range [J].
Hosoda, Takashi ;
Kipshidze, Gela ;
Tsvid, Gene ;
Shterengas, Leon ;
Belenky, Gregory .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (10) :718-720
[9]   Low threshold room-temperature continuous-wave operation of 2.24-3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers [J].
Lin, C ;
Grau, M ;
Dier, O ;
Amann, MC .
APPLIED PHYSICS LETTERS, 2004, 84 (25) :5088-5090
[10]   Novel Helmholtz-based photoacoustic sensor for trace gas detection at ppm level using GaInAsSb/GaAlAsSb DFB lasers [J].
Mattiello, M ;
Niklès, M ;
Schilt, S ;
Thévenaz, L ;
Salhi, A ;
Barat, D ;
Vicet, A ;
Rouillard, Y ;
Werner, R ;
Koeth, J .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2006, 63 (05) :952-958