On approximate group homomorphisms

被引:8
作者
Badora, Roman [1 ]
Przebieracz, Barbara [1 ]
机构
[1] Uniwersytet Slaski, Inst Matemat, Bankowa 14, PL-40007 Katowice, Poland
关键词
Approximate group homomorphism; Clam's stability problem; Erdos' problem; Farah's problem; STABILITY; EQUATION;
D O I
10.1016/j.jmaa.2018.02.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper refers to three stability problems for group homomorphisms posed by S. Ulam, P. Erclos and I. Farah. The main purpose of this work is to get rid of the assumption of the finiteness of groups used in the studies of I. Farah and B. Przebieracz. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:505 / 520
页数:16
相关论文
共 22 条
[1]  
[Anonymous], 1929, Collected works
[2]   More on Hyers' theorem [J].
Badora, Roman ;
Przebieracz, Barbara ;
Volkmann, Peter .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (02) :1116-1125
[3]  
Banach S., 1923, Fundamenta Mathematicae, V4, P7, DOI [10.4064/fm-4-1-7-33, DOI 10.4064/FM-4-1-7-33]
[4]  
Byers D. H., 1998, STABILITY FUNCTIONAL
[5]  
Day M. M., 1957, ILLINOIS J MATH, V1, P509
[6]   ON ALMOST ADDITIVE FUNCTIONS [J].
DEBRUIJN, NG .
COLLOQUIUM MATHEMATICUM, 1966, 15 (01) :59-&
[7]  
Erdos P., 1960, C MATH, V7, P311
[8]   Approximate homomorphisms II: Group homomorphisms [J].
Farah, I .
COMBINATORICA, 2000, 20 (01) :47-60
[9]   THE STABILITY OF HOMOMORPHISMS AND AMENABILITY, WITH APPLICATIONS TO FUNCTIONAL-EQUATIONS [J].
FORTI, GL .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1987, 57 :215-226
[10]  
Gajda Z., 1988, AEQUATIONES MATH, V36, P76