Inverse problems for quadratic derivative nonlinear wave equations

被引:47
作者
Wang, Yiran [1 ]
Zhou, Ting [2 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[2] Northeastern Univ, Dept Math, 360 Huntington Ave, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
Inverse problems; Lorentzian metric; nonlinear wave equations; nonlinear interaction of singularities; quadratic derivatives nonlinearity; PROGRESSING WAVES; NULL FORMS; SINGULARITIES;
D O I
10.1080/03605302.2019.1612908
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For semilinear wave equations on Lorentzian manifolds with quadratic derivative nonlinear terms, we study the inverse problem of determining the background Lorentzian metric. Under some conditions on the nonlinear term, we show that from the source-to-solution map, one can determine the Lorentzian metric up to diffeomorphisms.
引用
收藏
页码:1140 / 1158
页数:19
相关论文
共 23 条
[1]  
Bar C., 2007, ESI LECT MATH PHYS, DOI DOI 10.4171/037
[2]  
Beals Michael., 1989, Progress in Nonlinear Differential Equations and Their Applications, V3
[3]   On smooth Cauchy hypersurfaces and Geroch's splitting theorem [J].
Bernal, AN ;
Sánchez, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 243 (03) :461-470
[4]   Globally hyperbolic spacetimes can be defined as 'causal' instead of 'strongly causal' [J].
Bernal, Antonio N. ;
Sanchez, Miguel .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (03) :745-749
[5]  
Boothby M., 2002, INTRO DIFFERENTIABLE
[6]  
de Hoop M, 2015, ANN SCI ECOLE NORM S, V48, P351
[7]  
Friedlander G., 1975, CAMBRIDGE MONOGRAPHS, V2
[8]   ESTIMATES FOR SINGULAR RADON TRANSFORMS AND PSEUDODIFFERENTIAL-OPERATORS WITH SINGULAR SYMBOLS [J].
GREENLEAF, A ;
UHLMANN, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 89 (01) :202-232
[9]   RECOVERING SINGULARITIES OF A POTENTIAL FROM SINGULARITIES OF SCATTERING DATA [J].
GREENLEAF, A ;
UHLMANN, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :549-572
[10]   OSCILLATORY INTEGRALS WITH SINGULAR SYMBOLS [J].
GUILLEMIN, V ;
UHLMANN, G .
DUKE MATHEMATICAL JOURNAL, 1981, 48 (01) :251-267