Highly efficient electro-generation of H2O2 by adjusting liquid-gas solid three phase interfaces of porous carbonaceous cathode during oxygen reduction reaction

被引:146
作者
An, Jingkun [1 ,2 ]
Li, Nan [1 ,2 ]
Zhao, Qian [1 ]
Qiao, Yujie [1 ]
Wang, Shu [1 ]
Liao, Chengmei [3 ]
Zhou, Lean [3 ]
Li, Tian [3 ]
Wang, Xin [3 ]
Feng, Yujie [1 ,2 ,4 ]
机构
[1] Tianjin Univ, Sch Environm Sci & Engn, 92 Weijin Rd, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Acad Environm & Ecol, 92 Weijin Rd, Tianjin 300072, Peoples R China
[3] Nankai Univ, Tianjin Key Lab Environm Remediat & Pollut Contro, MOE Key Lab Pollut Proc & Environm Criteria, Tianjin 300350, Peoples R China
[4] Harbin Inst Technol, State Key Lab Urban Water Resource & Environm, 73 Huanghe Rd, Harbin 150090, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
H2O2; electrocatalysis; Oxygen reduction reaction; Three phase interfaces; Air breathing cathode; ADVANCED OXIDATION PROCESSES; MICROBIAL ELECTROCHEMICAL-CELLS; HYDROGEN-PEROXIDE SYNTHESIS; ROLLING ACTIVATED CARBON; WASTE-WATER; AIR-CATHODE; DIFFUSION LAYERS; CATALYST LAYER; GRAPHITE FELT; FENTON;
D O I
10.1016/j.watres.2019.114933
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Equilibrium of three reactants (oxygen, proton and electron) in oxygen reduction reaction at large current flux is necessary for highly efficient electro-generation of H2O2. In this work, we investigated reactants equilibrium and H2O2 electrochemical production in liquid-gas-solid three phase interfaces on rolling cathodes with high electroactive area, Electrocatalytic reaction accelerated the electrolyte intrusion into hydrophobic porous catalyst layer for higher electroactive surface area, resulting in a 21% increase of H2O2 yield at 15 mA cm(-2). Air aerated cathode submerged in air/O-2 aeration solution was unable to produce H2O2 efficiently due to the lack of O-2 in three phase interfaces (TPls), especially at current density > 2.5 mA cm(-2). For air breathing cathode, stable TPIs inside the active sites was created by addition of gas diffusion layer, to increase H2O2 production from 11 +/- 2 to 172 +/- 11 mg L-1 h(-1) at 15 mA cm-2. Pressurized air flow application enhanced both oxygen supply and H2O2 departure transfer to obtain a high H2O2 production of 461 +/- 11 mg L-1 h(-1) with CE of 89 2% at 35 mA cm(-2), 45% higher than passive gas transfer systems. Our findings provided a new insight of carbonaceous air cathode performance in producing H2O2, providing important information for the practical application and amplification of cathodes in the future. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 48 条
  • [21] Evaluation of advanced oxidation processes for water and wastewater treatment - A critical review
    Miklos, David B.
    Remy, Christian
    Jekel, Martin
    Linden, Karl G.
    Drewes, Joerg E.
    Huebner, Uwe
    [J]. WATER RESEARCH, 2018, 139 : 118 - 131
  • [22] Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters
    Moreira, Francisca C.
    Boaventura, Rui A. R.
    Brillas, Enric
    Vilar, Vitor J. P.
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 202 : 217 - 261
  • [23] Electrochemical advanced oxidation processes for sanitary landfill leachate remediation: Evaluation of operational variables
    Moreira, Francisca C.
    Soler, J.
    Fonseca, Amelia
    Saraiva, Isabel
    Boaventura, Rui A. R.
    Brillas, Enric
    Vilar, Vitor J. P.
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 182 : 161 - 171
  • [24] Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate
    Moreira, Francisca C.
    Soler, J.
    Fonseca, Amelia
    Saraiva, Isabel
    Boaventura, Rui A. R.
    Brillas, Enric
    Vilar, Vitor J. P.
    [J]. WATER RESEARCH, 2015, 81 : 375 - 387
  • [25] Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes
    Moreira, Francisca C.
    Boaventura, Rui A. R.
    Brillas, Enric
    Vilar, Vitor J. P.
    [J]. WATER RESEARCH, 2015, 75 : 95 - 108
  • [26] Degradation of the antibiotic trimethoprim by electrochemical advanced oxidation processes using a carbon-PTFE air-diffusion cathode and a boron-doped diamond or platinum anode
    Moreira, Francisca C.
    Garcia-Segura, Sergi
    Boaventura, Rui A. R.
    Brillas, Enric
    Vilar, Vitor J. P.
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2014, 160 : 492 - 505
  • [27] Electrocatalytic phenol degradation by a novel nanostructured carbon fiber brush cathode coated with graphene ink
    Mousset, Emmanuel
    Wang, Zuxin
    Hammaker, Joshua
    Lefebvre, Olivier
    [J]. ELECTROCHIMICA ACTA, 2017, 258 : 607 - 617
  • [28] Electrocatalytic activity enhancement of a graphene ink-coated carbon cloth cathode for oxidative treatment
    Mousset, Emmanuel
    Ko, Zheng Teng
    Syafiq, Muhammad
    Wang, Zuxin
    Lefebvre, Olivier
    [J]. ELECTROCHIMICA ACTA, 2016, 222 : 1628 - 1641
  • [29] Electrochemical Properties of Nanostructured Porous Gold Electrodes in Biofouling Solutions
    Patel, Jay
    Radhakrishnan, Logudurai
    Zhao, Bo
    Uppalapati, Badharinadh
    Daniels, Rodney C.
    Ward, Kevin R.
    Collinson, Maryanne M.
    [J]. ANALYTICAL CHEMISTRY, 2013, 85 (23) : 11610 - 11618
  • [30] Electrochemical advanced oxidation processes: today and tomorrow. A review
    Sires, Ignasi
    Brillas, Enric
    Oturan, Mehmet A.
    Rodrigo, Manuel A.
    Panizza, Marco
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2014, 21 (14) : 8336 - 8367