Algebras of distribution and arithmetic D modules

被引:3
作者
Huyghe, Christine [1 ]
Schmidt, Tobias [2 ]
机构
[1] Univ Strasbourg, IRMA, 7 Rue Rene Descartes, F-67084 Strasbourg, France
[2] Univ Rennes 1, IRMAR, Campus Beaulieu, F-35042 Rennes, France
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2018年 / 139卷
关键词
RIGID GEOMETRY; REPRESENTATIONS; LOCALIZATION; COHOMOLOGY; LEVEL;
D O I
10.4171/RSMUP/139-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a prime number, V a complete discrete valuation ring of unequal caracteristics (0;p), G a smooth affine algebraic group over Spec V. Using partial divided powers techniques of Berthelot, we construct arithmetic distribution algebras, with level m, generalizing the classical construction of the distribution algebra. We also construct the weak completion of the classical distribution algebra over a finite extension K of Qp. We then show that these distribution algebras can be identified with invariant arithmetic differential operators over G, and prove a coherence result when the ramification index of K is < p-1. © 2018, Universita di Padova. All rights reserved.
引用
收藏
页码:1 / 76
页数:76
相关论文
共 35 条
[1]   On irreducible representations of compact p-adic analytic groups [J].
Ardakov, Konstantin ;
Wadsley, Simon .
ANNALS OF MATHEMATICS, 2013, 178 (02) :453-557
[2]  
BEILINSON A, 1981, CR ACAD SCI I-MATH, V292, P15
[3]  
Beilinson A, 1983, P INT C MATH WARS PW, V1, P699
[4]  
BERTHELOT P, 1990, LECT NOTES MATH, V1454, P80
[5]  
Berthelot P, 2002, ASTERISQUE, P1
[6]  
Berthelot P, 1996, ANN SCI ECOLE NORM S, V29, P185
[7]  
Berthelot P., 2000, MEM SOC MATH FRANCE, V81
[8]  
Berthelot Pierre, 1978, Notes on Crystalline Cohomology
[9]  
Borel A., 1987, ALGEBRAIC D MODULES, V2, pxii + 355
[10]   FORMAL AND RIGID GEOMETRY .1. RIGID-SPACES [J].
BOSCH, S ;
LUTKEBOHMERT, W .
MATHEMATISCHE ANNALEN, 1993, 295 (02) :291-317