Charges in middle dimensions

被引:16
作者
De Pauw, Thierry [1 ]
Moonens, Laurent [2 ]
Pfeffer, Washek F. [3 ]
机构
[1] Univ Denis Diderot Paris 7, Inst Math Jussieu, Equipe Geometrie & Dynam, F-75205 Paris 13, France
[2] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
[3] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2009年 / 92卷 / 01期
关键词
Localized locally convex topologies; Normal currents; Representation of charges and flat cochains; Cohomology;
D O I
10.1016/j.matpur.2009.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Giving the space N(m)(R(n)) of m-dimensional normal currents a suitable topology, we define charges as continuous linear functionals. A continuous differential form omega : R(n) -> Lambda(m)R(n) acting on N(m)(R(n)) by <omega, T > := < T, omega > is an example of a charge. We show that for every charge alpha there are continuous m- and (m - 1)-dimensional forms omega and zeta such that alpha = omega + d zeta holds weakly. This representation can be used to define a cohomology akin to that of de Rham. (c) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:86 / 112
页数:27
相关论文
共 13 条
[1]  
Bourgain J, 2003, J AM MATH SOC, V16, P393
[2]  
De Pauw T, 1998, INDIANA U MATH J, V47, P99
[3]   On the exceptional sets of the flux of a bounded vectorfield [J].
De Pauw, T .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (09) :1191-1217
[4]   Distributions for which div υ = F has a continuous solution [J].
De Pauw, Thierry ;
Pfeffer, Washek F. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (02) :230-260
[5]  
Edwards R.E., 1995, FUNCTIONAL ANAL
[6]  
Evans L. C., 2018, Studies in Advanced Mathematics
[7]  
Federer H., 1969, GEOMETRIC MEASURE TH, V153
[8]  
MOONENS L, CAND MATH B IN PRESS
[9]   The multidimensional Luzin theorem [J].
Moonens, Laurent ;
Pfeffer, Washek F. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) :746-752
[10]  
Oxtoby J. C., 1971, MEASURE CATEGORY