Faraday waves in Bose-Einstein condensates with engineering three-body interactions

被引:10
作者
Abdullaev, F. Kh [1 ,2 ]
Gammal, A. [3 ]
Tomio, Lauro [2 ,4 ]
机构
[1] Int Islamic Univ Malaysia, Fac Sci, Dept Phys, Jln Sultan Ahmad Shah, Kuantan 25200, Malaysia
[2] Univ Fed ABC, CCNH, BR-09210170 Santo Andre, Brazil
[3] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil
[4] UNESP Univ Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Bose-Einstein condensate; Faraday waves; dynamic properties of condensates; BEC in periodic nonlinear potentials; MODULATIONAL INSTABILITY; FESHBACH RESONANCES;
D O I
10.1088/0953-4075/49/2/025302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider Bose-Einstein condensates with two-and three-body interactions periodically varying in time. Two models of time-dependent three-body interactions, with quadratic and quartic dependence on the two-body atomic scattering length a(s), are studied. It is shown that parametric instabilities in the condensate lead to the generation of Faraday waves (FWs), with wavelengths depending on the background scattering length, as well as on the frequency and amplitude of the modulations of a(s). From an experimental perspective, this opens a new possibility to tune the period of Faraday patterns by varying not only the frequency of modulations and background scattering length, but also the amplitude of the modulations. The latter effect can be used to estimate the parameters of three-body interactions from the FW experimental results. Theoretical predictions are confirmed by numerical simulations of the corresponding extended Gross-Pitaevskii equation.
引用
收藏
页数:12
相关论文
共 39 条
[1]   Faraday waves in quasi-one-dimensional superfluid Fermi-Bose mixtures [J].
Abdullaev, F. Kh. ;
Ogren, M. ;
Sorensen, M. P. .
PHYSICAL REVIEW A, 2013, 87 (02)
[2]   Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices [J].
Abdullaev, Fatkhulla ;
Abdumalikov, Abdulaziz ;
Galimzyanov, Ravil .
PHYSICS LETTERS A, 2007, 367 (1-2) :149-155
[3]   Propagation of matter-wave solitons in periodic and random nonlinear potentials [J].
Abdullaev, FK ;
Garnier, J .
PHYSICAL REVIEW A, 2005, 72 (06)
[4]   Dynamical stabilization of solitons in cubic-quintic nonlinear Schrodinger model [J].
Abdullaev, FK ;
Garnier, J .
PHYSICAL REVIEW E, 2005, 72 (03)
[5]  
Abdullaev FK, 2001, PHYS REV A, V63, DOI 10.1103/PhysRevA.63.043604
[6]   Modulational instability of electromagnetic waves in media with varying nonlinearity [J].
Abdullaev, FK ;
Darmanyan, SA ;
Bischoff, S ;
Sorensen, MP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (01) :27-33
[7]  
ABDULLAEV FK, 2002, PROGR OPTICS, V44, P303, DOI DOI 10.1016/S0079-6638(02)80018-X
[8]   Tunable modulational instability sidebands via parametric resonance in periodically tapered optical fibers [J].
Armaroli, Andrea ;
Biancalana, Fabio .
OPTICS EXPRESS, 2012, 20 (22) :25096-25110
[9]   Faraday waves in collisionally inhomogeneous Bose-Einstein condensates [J].
Balaz, Antun ;
Paun, Remus ;
Nicolin, Alexandru I. ;
Balasubramanian, Sudharsan ;
Ramaswamy, Radha .
PHYSICAL REVIEW A, 2014, 89 (02)
[10]   Faraday waves in binary nonmiscible Bose-Einstein condensates [J].
Balaz, Antun ;
Nicolin, Alexandru I. .
PHYSICAL REVIEW A, 2012, 85 (02)