The repulsion between localization centers in the Anderson model

被引:0
|
作者
Nakano, Fumihiko [1 ]
机构
[1] Kochi Univ, Fac Sci, Dept Math & Informat Sci, Kochi 7808520, Japan
关键词
Anderson localization; localization center;
D O I
10.1007/s10955-006-9086-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this note we show that, a simple combination of deep results in the theory of random Schrodinger operators yields a quantitative estimate of the fact that the localization centers become far apart, as corresponding energies are close together.
引用
收藏
页码:803 / 810
页数:8
相关论文
共 50 条
  • [1] The Repulsion Between Localization Centers in the Anderson Model
    Fumihiko Nakano
    Journal of Statistical Physics, 2006, 123 : 803 - 810
  • [2] Relation between the localization length and level repulsion in 2D Anderson localization
    Mondal, Sandip
    Mujumdar, Sushil
    OPTICS LETTERS, 2020, 45 (04) : 997 - 1000
  • [3] THE ANDERSON MODEL WITH FINITE COULOMB REPULSION
    PRUSCHKE, T
    GREWE, N
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 74 (04): : 439 - 449
  • [4] EFFECT OF COULOMB REPULSION BETWEEN LOCALIZED AND EXTENDED STATES IN THE ANDERSON MODEL
    ALASCIO, B
    ALLUB, R
    BALSEIRO, CA
    PHYSICAL REVIEW B, 1986, 34 (07): : 4786 - 4789
  • [5] Anderson localization for the Holstein model
    Gentile, G
    Mastropietro, V
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 215 (01) : 69 - 103
  • [6] ANDERSON LOCALIZATION IN AN ANISOTROPIC MODEL
    CHU, QJ
    ZHANG, ZQ
    PHYSICAL REVIEW B, 1993, 48 (15): : 10761 - 10765
  • [7] Incipient localization in the Anderson model
    Uski, V
    Mehlig, B
    Römer, RA
    Schreiber, M
    PHYSICA B-CONDENSED MATTER, 2000, 284 : 1934 - 1935
  • [8] Anderson Localization for the Holstein Model
    G. Gentile
    V. Mastropietro
    Communications in Mathematical Physics, 2000, 215 : 69 - 103
  • [9] Anderson Localization for a Supersymmetric Sigma Model
    Disertori, M.
    Spencer, T.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 300 (03) : 659 - 671
  • [10] ANDERSON LOCALIZATION IN THE NONDISCRETE MARYLAND MODEL
    GEILER, VA
    MARGULIS, VA
    THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 70 (02) : 133 - 140