STRICHARTZ AND LOCAL SMOOTHING ESTIMATES FOR STOCHASTIC DISPERSIVE EQUATIONS WITH LINEAR MULTIPLICATIVE NOISE

被引:9
作者
Zhang, Deng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
local smoothing estimates; pseudodifferential operators; stochastic dispersive equa-tion; Strichartz estimates; NONLINEAR SCHRODINGER-EQUATION; CAUCHY-PROBLEM; LARGE DEVIATIONS; REGULARITY; DRIVEN; DECAY;
D O I
10.1137/21M1426304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the pathwise Strichartz and local smoothing estimates for a general class of stochastic dispersive equations with linear multiplicative noise, including especially the stochastic Schrodinger and Airy equations. The upper bounds and high integrability of random constants in these estimates are also obtained. These estimates have several applications to stochastic nonlinear problems, including the pathwise well-posedness and P-integrability of solutions. Furthermore, the large deviation principle for the small noise asymptotics is derived for both the stochastic inhomoge-neous dispersive equations and stochastic nonlinear Schrodinger equations with variable coefficients. The crucial point of proof is the invariance of the principal symbol under the Doss-Sussman type transformation. The lower order perturbations are controlled by the pseudodifferential calculus and semimartingale properties of stochastic homogeneous solutions.
引用
收藏
页码:5981 / 6017
页数:37
相关论文
共 72 条
  • [1] Stochastic Camassa-Holm equation with convection type noise
    Albeverio, Sergio
    Brzezniak, Zdzislaw
    Daletskii, Alexei
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 276 : 404 - 432
  • [2] Arnold L., 1998, SPRINGER MONOGRAPHS
  • [3] TEMPERATURE EFFECTS IN A NONLINEAR MODEL OF MONOLAYER SCHEIBE AGGREGATES
    BANG, O
    CHRISTIANSEN, PL
    IF, F
    RASMUSSEN, KO
    GAIDIDEI, YB
    [J]. PHYSICAL REVIEW E, 1994, 49 (05): : 4627 - 4636
  • [4] OPTIMAL BILINEAR CONTROL OF NONLINEAR STOCHASTIC SCHRTMDINGER EQUATIONS DRIVEN BY LINEAR MULTIPLICATIVE NOISE
    Barbu, Viorel
    Roeckner, Michael
    Zhang, Deng
    [J]. ANNALS OF PROBABILITY, 2018, 46 (04) : 1957 - 1999
  • [5] Stochastic nonlinear Schrodinger equations: No blow-up in the non-conservative case
    Barbu, Viorel
    Roeckner, Michael
    Zhang, Deng
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (11) : 7919 - 7940
  • [6] The stochastic logarithmic Schrodinger equation
    Barbu, Viorel
    Roeckner, Michael
    Zhang, Deng
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (02): : 123 - 149
  • [7] Stochastic nonlinear Schrodinger equations
    Barbu, Viorel
    Roeckner, Michael
    Zhang, Deng
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 136 : 168 - 194
  • [8] An operatorial approach to stochastic partial differential equations driven by linear multiplicative noise
    Barbu, Viorel
    Roeckner, Michael
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (07) : 1789 - 1815
  • [9] Stochastic Nonlinear Schrodinger Equations with Linear Multiplicative Noise: Rescaling Approach
    Barbu, Viorel
    Roeckner, Michael
    Zhang, Deng
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2014, 24 (03) : 383 - 409
  • [10] Stochastic Porous Media Equations and Self-Organized Criticality
    Barbu, Viorel
    Da Prato, Giuseppe
    Roeckner, Michael
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (03) : 901 - 923