The classical exchange algebra of AdS5 X S5 string theory

被引:44
作者
Magro, Marc [1 ,2 ,3 ]
机构
[1] Univ Lyon, Phys Lab, ENS Lyon, 46 Allee Italie, F-69364 Lyon 07, France
[2] CNRS, UMR 5672, F-69364 Lyon 07, France
[3] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany
关键词
AdS-CFT Correspondence; Integrable Field Theories; Sigma Models; DILATATION OPERATOR; TWIST-3; OPERATORS; MULTICOLOR QCD; S-MATRIX; INTEGRABILITY; EQUATIONS; GAUGE;
D O I
10.1088/1126-6708/2009/01/021
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The classical exchange algebra satisfied by the monodromy matrix of AdS(5) X S-5 string theory in the Green-Schwarz formulation is determined by using a first-order Hamiltonian formulation and by adding to the Bena-Polchinski-Roiban Lax connection terms proportional to constraints. This enables in particular to show that the conserved charges of this theory are in involution. This result is obtained for a general world-sheet metric. The same exchange algebra is obtained within the pure spinor description of AdS(5) X S-5 string theory. These results are compared to the one obtained by A. Mikhailov and S. Schafer-Nameki for the pure spinor formulation.
引用
收藏
页数:33
相关论文
共 75 条
[1]  
Adam I, 2007, J HIGH ENERGY PHYS
[2]  
Aisaka Y, 2005, J HIGH ENERGY PHYS
[3]  
[Anonymous], ARXIV07061525
[4]  
[Anonymous], 2003, INTRO CLASSICAL INTE, DOI DOI 10.1017/CBO9780511535024
[5]  
Aoyama S., ARXIV07093911
[6]  
Arutyunov G, 2005, J HIGH ENERGY PHYS, DOI 10.1088/1126-6708/2005/02/059
[7]   Bethe ansatz for quantum strings [J].
Arutyunov, G ;
Frolov, S ;
Staudacher, M .
JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10) :295-315
[8]   Superstrings on AdS4 x CP3 as a coset sigma-model [J].
Arutyunov, Gleb ;
Frolov, Sergey .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (09)
[9]  
Baxter R J., 2007, Exactly Solved Models in Statistical Mechanics
[10]   The algebraic curve of classical superstrings on AdS5 x S5 [J].
Beisert, N ;
Kazakov, VA ;
Sakai, K ;
Zarembo, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 263 (03) :659-710