Detailed study of DFIG-based wind turbines to overcome the most severe grid faults

被引:22
|
作者
Rolan, Alejandro [1 ]
Pedra, Joaquin [2 ]
Corcoles, Felipe [2 ]
机构
[1] Univ Jaume 1, Dept Ind Syst Engn & Design, Castellon de La Plana 12071, Spain
[2] ETSEIB UPC, Dept Elect Engn, Barcelona 08028, Spain
关键词
Doubly-fed induction generator (DFIG); Fault clearing; Fault ride-through capability; Rotor-side converter; Symmetrical voltage sag; Unsymmetrical voltage sag; FED INDUCTION GENERATOR; VOLTAGE RECOVERY; RIDE; DYNAMICS;
D O I
10.1016/j.ijepes.2014.05.031
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper studies the effects of voltage sags caused by faults on doubly-fed induction generators to overcome grid faults. A wide range of sag duration and depth values is considered. It is observed that sag duration influence is periodical. Sag effects depend on duration and depth and on the fault-clearing process as well. Two approaches of the model are compared: the most accurate approach, discrete sag, considers that the fault is cleared in the successive natural fault-current zeros of affected phases, leading to a voltage recovery in several steps; the least accurate approach, abrupt sag, considers that the fault is cleared instantaneously in all affected phases, leading to a one-step voltage recovery. Comparison between both sag models reveals that the fault-clearing process smoothes sag effects. The study assumes that the rotor-side converter can keep constant the transformed rotor current in the synchronous reference frame, thus providing insights into wind turbine fault ride-through capability. The voltage limit of the rotor-side converter is considered to show the situations where the rotor current can be controlled. Finally, a table and a 3D figure summarizing the effects of the most severe grid faults on the rotor-side converter to overcome the most severe faults are provided. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:868 / 878
页数:11
相关论文
共 50 条
  • [1] Review of Control Strategies for DFIG-Based Wind Turbines under Unsymmetrical Grid Faults
    Tourou, Pavlos
    Sourkounis, Constantinos
    2014 NINTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2014,
  • [2] Capability of Asymmetrical Grid Faults Ride-through for DFIG-based Wind Turbines
    Zheng, Zhong
    Yang, Geng
    Geng, Hua
    38TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2012), 2012, : 3533 - 3540
  • [3] Power Compensation Control for DFIG-Based Wind Turbines to Enhance Synchronization Stability During Severe Grid Faults
    Yang, Yihang
    Zhu, Donghai
    Zou, Xudong
    Chi, Yongning
    Kang, Yong
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (09) : 10139 - 10143
  • [4] Transient Characteristics and Quantitative Analysis of Electromotive Force for DFIG-based Wind Turbines during Grid Faults
    Ma, Yumei
    Zhu, Donghai
    Zou, Xudong
    Kang, Yong
    Guerrero, Josep M.
    CHINESE JOURNAL OF ELECTRICAL ENGINEERING, 2022, 8 (02): : 3 - 12
  • [5] Dynamic Stability Analysis of the Weak Grid-Connected DFIG-based Wind Turbines under Severe Symmetrical Faults
    Liu, Ruikuo
    Yao, Jun
    Pei, Jinxin
    Wang, Xuewei
    Sun, Peng
    Guo, Xiaolong
    2018 INTERNATIONAL CONFERENCE ON POWER SYSTEM TECHNOLOGY (POWERCON), 2018, : 1512 - 1517
  • [6] Fault Ride Through Technique for DFIG-based Wind Turbines Under Grid Three-phase Faults
    Makolo, Peter
    Justo, Jackson J.
    Mwasilu, Francis
    Zamora, Ramon
    2018 AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2018,
  • [7] Small Signal Dynamics of DFIG-Based Wind Turbines During Riding Through Symmetrical Faults in Weak AC Grid
    Hu, Jiabing
    Wang, Bo
    Wang, Weisheng
    Tang, Haiyan
    Chi, Yongning
    Hu, Qi
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2017, 32 (02) : 720 - 730
  • [8] Detailed Investigation and Performance Improvement of the Dynamic Behavior of Grid-Connected DFIG-Based Wind Turbines Under LVRT Conditions
    Alsmadi, Yazan M.
    Xu, Longya
    Blaabjerg, Frede
    Ortega, Alejandro J. Pina
    Abdelaziz, Almoataz Y.
    Wang, Aimeng
    Albataineh, Zaid
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (05) : 4795 - 4812
  • [9] Rotor current transient analysis of DFIG-based wind turbines during symmetrical voltage faults
    Ling, Yu
    Cai, Xu
    Wang, Ningbo
    ENERGY CONVERSION AND MANAGEMENT, 2013, 76 : 910 - 917
  • [10] Efficient fault-ride-through control strategy of DFIG-based wind turbines during the grid faults
    Mohammadi, J.
    Afsharnia, S.
    Vaez-Zadeh, S.
    ENERGY CONVERSION AND MANAGEMENT, 2014, 78 : 88 - 95