Deep reinforcement learning with its application for lung cancer detection in medical Internet of Things

被引:88
|
作者
Liu, Zhuo [1 ]
Yao, Chenhui [2 ]
Yu, Hang [3 ]
Wu, Taihua [1 ]
机构
[1] Dalian Med Univ, Affiliated Hosp 1, Dalian 116000, Peoples R China
[2] China Med Univ, Shengjing Hosp, Shenyang 110004, Liaoning, Peoples R China
[3] St Francis Xavier Univ, Dept Comp Sci, Antigonish, NS B2G 2W5, Canada
关键词
Smart medicine; Medical Internet of Things; Deep reinforcement learning; Lung cancer; MODEL;
D O I
10.1016/j.future.2019.02.068
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, deep reinforcement learning has achieved great success by integrating deep learning models into reinforcement learning algorithms in various applications such as computer games and robots. Specially, it is promising for computer-aided diagnosis and treatment to combine deep reinforcement learning with medical big data generated and collected from medical Internet of Things. In this paper, we focus on the potential of the deep reinforcement learning for lung cancer detection as many people are suffering from the lung tumor and about 1.8 million patients died from lung cancer in 2018. Early detection and diagnosis of lung tumor can significantly improve the treatment effect and prolong survival. In this work, we present several representative deep reinforcement learning models that are potential to use for lung cancer detection. Furthermore, we summarize the common types of lung cancer and the main characteristics of each type. Finally, we point out the open challenges and possible future research directions of applying deep reinforcement learning to lung cancer detection, which is expected to promote the evolution of smart medicine with medical Internet of Things. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] A Particle Swarm Optimization and Deep Learning Approach for Intrusion Detection System in Internet of Medical Things
    Chaganti, Rajasekhar
    Mourade, Azrour
    Ravi, Vinayakumar
    Vemprala, Naga
    Dua, Amit
    Bhushan, Bharat
    SUSTAINABILITY, 2022, 14 (19)
  • [32] An Integrated Deep Learning Algorithm for Detecting Lung Nodules With Low-Dose CT and Its Application in 6G-Enabled Internet of Medical Things
    Wang, Wei
    Liu, Fang
    Zhi, Xiaohui
    Zhang, Tong
    Huang, Chuanchao
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (07) : 5274 - 5284
  • [33] Deep Learning for the Internet of Things
    Yao, Shuochao
    Zhao, Yiran
    Zhang, Aston
    Hu, Shaohan
    Shao, Huajie
    Zhang, Chao
    Su, Lu
    Abdelzaher, Tarek
    COMPUTER, 2018, 51 (05) : 32 - 41
  • [34] MEDICAL APPLICATION ON INTERNET OF THINGS
    Zhao, Wei
    Wang, Chaowei
    Nakahira, Yorie
    PROCEEDINGS OF 2011 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY AND APPLICATION, ICCTA2011, 2011, : 660 - 665
  • [35] Botnet Detection in the Internet of Things using Deep Learning Approaches
    McDermott, Christopher D.
    Majdani, Farzan
    Petrovski, Andrei, V
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [36] Intrusion detection for Industrial Internet of Things based on deep learning
    Lu, Yaoyao
    Chai, Senchun
    Suo, Yuhan
    Yao, Fenxi
    Zhang, Chen
    NEUROCOMPUTING, 2024, 564
  • [37] Intrusion Detection Model of Internet of Things Based on Deep Learning
    Wang, Yan
    Han, Dezhi
    Cui, Mingming
    COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2023, 20 (04) : 1519 - 1540
  • [38] Survey of Intrusion Detection Using Deep Learning in the Internet of Things
    Farhan B.I.
    Jasim A.D.
    Iraqi Journal for Computer Science and Mathematics, 2022, 3 (01): : 83 - 93
  • [39] A Survey of Deep Learning Technologies for Intrusion Detection in Internet of Things
    Liao, Han
    Murah, Mohd Zamri
    Hasan, Mohammad Kamrul
    Aman, Azana Hafizah Mohd
    Fang, Jin
    Hu, Xuting
    Khan, Atta Ur Rehman
    IEEE ACCESS, 2024, 12 : 4745 - 4761
  • [40] Hybrid deep learning model for attack detection in internet of things
    H. Rekha
    M. Siddappa
    Service Oriented Computing and Applications, 2022, 16 : 293 - 312