A POSTERIORI ERROR CONTROL FOR DPG METHODS

被引:61
作者
Carstensen, Carsten [1 ]
Demkowicz, Leszek [2 ]
Gopalakrishnan, Jay [3 ]
机构
[1] Humboldt Univ, Dept Math, D-10099 Berlin, Germany
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[3] Portland State Univ, Portland, OR 97207 USA
基金
美国国家科学基金会;
关键词
least-squares; inexact solution; discontinuous; Petrov-Galerkin; DPG; Laplacian; linear elasticity; Stokes; true fluid stress; DISCONTINUOUS GALERKIN APPROXIMATIONS; LINEAR ELASTICITY; UNIFYING THEORY; STOKES; CONVERGENCE; FEM;
D O I
10.1137/130924913
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A combination of ideas in least-squares finite element methods with those of hybridized methods recently led to discontinuous Petrov-Galerkin (DPG) finite element methods. They minimize a residual inherited from a piecewise ultraweak formulation in a nonstandard, locally computable, dual norm. This paper establishes a general a posteriori error analysis for the natural norms of the DPG schemes under conditions equivalent to a priori stability estimates. It is proven that the locally computable residual norm of any discrete function is a lower and an upper error bound up to explicit data approximation errors. The presented abstract framework for a posteriori error analysis applies to known DPG discretizations of Laplace and Lame equations and to a novel DPG method for the stress-velocity formulation of Stokes flow with symmetric stress approximations. Since the error control does not rely on the discrete equations, it applies to inexactly computed or otherwise perturbed solutions within the discrete spaces of the functional framework. Numerical illustrations show that the error control is practically feasible.
引用
收藏
页码:1335 / 1353
页数:19
相关论文
共 32 条
[1]  
Ainsworth M., 2000, PUR AP M-WI
[2]   A posteriori error estimation for discontinuous Galerkin finite element approximation [J].
Ainsworth, Mark .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) :1777-1798
[3]  
[Anonymous], 2003, Lectures in mathematics ETH Zurich
[4]  
Babuska I., 2001, NUMER MATH SCI COMP
[5]  
Bochev PB, 2009, APPL MATH SCI, V166, P3, DOI 10.1007/b13382_1
[6]   QUASI-OPTIMAL CONVERGENCE RATE OF AN ADAPTIVE DISCONTINUOUS GALERKIN METHOD [J].
Bonito, Andrea ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (02) :734-771
[7]  
Bramwell J, 2012, NUMER MATH, V122, P671, DOI 10.1007/s00211-012-0476-6
[8]   A multigrid method for the pseudostress formulation of Stokes problems [J].
Cai, Zhiqiang ;
Wang, Yanqiu .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 29 (05) :2078-2095
[9]   A unifying theory of a posteriori finite element error control [J].
Carstensen, C .
NUMERISCHE MATHEMATIK, 2005, 100 (04) :617-637
[10]   A Review of Unified A Posteriori Finite Element Error Control [J].
Carstensen, C. ;
Eigel, M. ;
Hoppe, R. H. W. ;
Loebhard, C. .
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2012, 5 (04) :509-558