DEFINING POWER SUMS OF n AND φ(n) INTEGERS

被引:13
作者
Singh, Jitender [1 ,2 ]
机构
[1] Panjab Univ, Dept Math, Chandigarh 160014, India
[2] Jaypee Univ Informat Technol, Dept Math, Waknaghat 173215, Himachal Prades, India
关键词
Power sum; Euler phi function; generating function; alpha-Euler number; zeta function;
D O I
10.1142/S179304210900189X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let n be a positive integer and phi(n) denotes the Euler phi function. It is well known that the power sum of n can be evaluated in closed form in terms of n. Also, the sum of all those phi(n) positive integers that are coprime to n and not exceeding n, is expressible in terms of n and phi(n). Although such results already exist in literature, but here we have presented some new analytical results in these connections. Some functional and integral relations are derived for the general power sums.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 10 条
  • [1] Apostol T.M., 1976, INTRO ANAL NUMBER TH
  • [2] BERNDT BC, 1985, RAMANUJANS NOTEBOO 1, P109
  • [3] CARTIER, 2000, SEMI LOTHAR COMBIN, V44, P1
  • [4] DUNHAM W, 1999, DOLCANI MATH EXPOSIT, V22
  • [5] Euler L., 1744, Commentarii Academiae Scientiarum Petropolitanae, V9, P160
  • [6] EULER L, 1911, I CALCULI DIFFEREN 1, V10
  • [7] Euler L., 1768, Mem. Acad. Sci. Berl., P83
  • [8] HANS JH, 2001, AM MATH MONTHLY, V108, P258
  • [9] Howard FT, 1996, FIBONACCI QUART, V34, P244
  • [10] KRISHNAPRIYAN HK, 1995, COLL MATH J, V26, P118