Revealing the role of dislocations on the stability of retained austenite in a tempered bainite

被引:53
作者
He, S. H. [1 ,2 ]
He, B. B. [1 ,2 ]
Zhu, K. Y. [3 ]
Ding, R. [4 ]
Chen, H. [4 ]
Huang, M. X. [1 ,2 ]
机构
[1] Univ Hong Kong, Shenzhen Inst Res & Innovat, Shenzhen, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Pokfulam Rd, Hong Kong, Peoples R China
[3] ArcelorMittal Res, Voie Romaine BP30320, F-57283 Maizieres Les Metz, France
[4] Tsinghua Univ, Sch Mat Sci & Engn, Minist Educ, Key Lab Adv Mat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Tempered Bainite; Dislocation density; Carbide-free bainite; TRIP effect; Retained austenite; TRANSFORMATION-INDUCED PLASTICITY; LATH MARTENSITE; MECHANICAL STABILITY; BEHAVIOR; STEELS; TEMPERATURE; DIFFRACTION; STRESS; STRAIN;
D O I
10.1016/j.scriptamat.2019.04.019
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present study, for the first time, provides direct experimental evidence revealing the effect of dislocations of the bainite matrix on the mechanical stability of retained austenite (RA) in a low carbon bainitic steel, while keeping all other influencing factors unchanged. A lower strength of bainitic matrix caused by its reduced dislocation density results in more stress partitioning onto RA during plastic deformation, which promotes the transformation of RA to martensite. In addition, the annihilation of dislocations in the bainite matrix relaxes the compressive stress field resulted from the bainitic transformation, facilitating the martensitic transformation during deformation. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:23 / 27
页数:5
相关论文
共 29 条
[1]  
[Anonymous], 2017, STEELS MICROSTRUCTUR
[2]   Some phase transformations in steels [J].
Bhadeshia, HKDH .
MATERIALS SCIENCE AND TECHNOLOGY, 1999, 15 (01) :22-29
[3]   Very strong bainite [J].
Caballero, FG ;
Bhadeshia, HKDH .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2004, 8 (3-4) :251-257
[4]   Quantitative measurement of deformation-induced martensite in 304 stainless steel by X-ray diffraction [J].
De, AK ;
Murdock, DC ;
Mataya, MC ;
Speer, JG ;
Matlock, DK .
SCRIPTA MATERIALIA, 2004, 50 (12) :1445-1449
[5]   MARTENSITE [J].
FRANK, FC .
ACTA METALLURGICA, 1953, 1 (01) :15-21
[6]   On measurement of carbon content in retained austenite in a nanostructured bainitic steel [J].
Garcia-Mateo, C. ;
Caballero, F. G. ;
Miller, M. K. ;
Jimenez, J. A. .
JOURNAL OF MATERIALS SCIENCE, 2012, 47 (02) :1004-1010
[7]  
Garcia-Mateo C., 2017, METALS, V7
[8]   The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe-9Mn-0.05C steel [J].
Han, Jeongho ;
Lee, Seung-Joon ;
Jung, Jae-Gil ;
Lee, Young-Kook .
ACTA MATERIALIA, 2014, 78 :369-377
[9]   Work Hardening, Dislocation Structure, and Load Partitioning in Lath Martensite Determined by In Situ Neutron Diffraction Line Profile Analysis [J].
Harjo, Stefanus ;
Kawasaki, Takuro ;
Tomota, Yo ;
Gong, Wu ;
Aizawa, Kazuya ;
Tichy, Geza ;
Shi, Zengmin ;
Ungar, Tamas .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2017, 48A (09) :4080-4092
[10]   On the nanoindentation behaviour of complex ferritic phases [J].
He, B. B. ;
Zhu, K. ;
Huang, M. X. .
PHILOSOPHICAL MAGAZINE LETTERS, 2014, 94 (07) :439-446