Deep Index-of-Maximum Hashing for Face Template Protection

被引:0
|
作者
Cui, Jiandong [1 ]
Teoh, Andrew Beng Jin [1 ]
机构
[1] Yonsei Univ, Sch Elect & Elect Engn, Seoul, South Korea
来源
2020 5TH INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION SYSTEMS (ICCCS 2020) | 2020年
基金
新加坡国家研究基金会;
关键词
biometrics; face template protection; deep learning; cancellable biometrics;
D O I
10.1109/icccs49078.2020.9118594
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Face authentication is one of the most common biometrics available nowadays. Ensuring security of facial templates is vital to circumvent impersonation and privacy invasion. One of the notable remedies for facial template protection is cancelable biometrics whereby the compromised template can be revoked and replaced. In this work, we propose a cancelable facial template technique based on the Index-of-Maximum (IoM) hashing by means of deep neural networks, termed as Deep IoM (DIoM) hashing. Unlike data-agnostic IoM hashing, the DIoM hashing is data-driven and trained by supervision to render a discriminative cancelable facial template. The DIoM hashing relies upon a permutable pretrained deep feature learning network and a hashing network responsible for optimizing the DIoM hash codes. The hashing network consolidates maxout and softmax function, namely softmaxout to approximate the discrete DIoM hash code. A dedicated loss function is designed in order to achieve similarity-preserving learning, code balancing and quantization. The proposed network is assessed on unconstraint Labeled Faces in the Wild dataset and shown outperformed vanilla IoM hashing significantly.
引用
收藏
页码:413 / 418
页数:6
相关论文
共 25 条
  • [1] Finger Vein Template Protection Based on Alignment-Robust Feature Description and Index-of-Maximum Hashing
    Kirchgasser S.
    Kauba C.
    Lai Y.-L.
    Zhe J.
    Uhl A.
    IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2 (04): : 337 - 349
  • [2] Cancellable biometrics based on the index-of-maximum hashing with random sparse binary encoding
    Kim J.
    Park J.
    Low C.Y.
    Teoh A.B.J.
    Multimedia Tools and Applications, 2024, 83 (21) : 59915 - 59942
  • [3] Deep Secure Encoding for Face Template Protection
    Pandey, Rohit Kumar
    Zhou, Yingbo
    Kota, Bhargava Urala
    Govindaraju, Venu
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 77 - 83
  • [4] A survey on face template protection methods
    Barcic, Ena
    Tomicic, Igor
    Harjac, Mario
    CENTRAL EUROPEAN CONFERENCE ON INFORMATION AND INTELLIGENT SYSTEMS, CECIIS 2022, 2022, : 341 - 348
  • [5] Deep rank hashing network for cancellable face identification
    Dong, Xingbo
    Cho, Sangrae
    Kim, Youngsam
    Kim, Soohyung
    Teoh, Andrew Beng Jin
    PATTERN RECOGNITION, 2022, 131
  • [6] SecureFace: Face Template Protection
    Mai, Guangcan
    Cao, Kai
    Lan, Xiangyuan
    Yuen, Pong C.
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 262 - 277
  • [7] A Cancellable Ranking Based Hashing Method for Fingerprint Template Protection
    Jin, Zhe
    Hwang, Jung Yeon
    Kim, Soohyung
    Cho, Sangrae
    Lai, Yen-Lung
    Teoh, Andrew Beng Jin
    MOBILE NETWORKS AND MANAGEMENT (MONAMI 2017), 2018, 235 : 378 - 389
  • [8] A hybrid approach for face template protection
    Feng, Y. C.
    Yuen, Pong C.
    Jain, Anil K.
    BIOMETRIC TECHNOLOGY FOR HUMAN IDENTIFICATION V, 2008, 6944
  • [9] Face Template Protection Algorithm Based on DNA Encoding Encryption
    He, Futong
    Zhen, Jiaqi
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING, 2020, 516 : 387 - 393
  • [10] Deep Double Center Hashing for Face Image Retrieval
    Fu, Xin
    Wang, Wenzhong
    Tang, Jin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 636 - 648