A new approach to integrable evolution equations on the circle

被引:9
作者
Fokas, A. S. [1 ,2 ]
Lenells, J. [3 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Univ Southern Calif, Viterbi Sch Engn, Los Angeles, CA 90089 USA
[3] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 477卷 / 2245期
基金
瑞典研究理事会; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
integrable evolution equation; Riemann-Hilbert problem; finite-gap solution; inverse scattering; unified transform method; Fokas method; INVERSE SCATTERING TRANSFORM; NONLINEAR SCHRODINGER-EQUATION; BOUNDARY VALUE-PROBLEM; N-WAVE;
D O I
10.1098/rspa.2020.0605
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a new approach for the solution of initial value problems for integrable evolution equations in the periodic setting based on the unified transform. Using the nonlinear Schrodinger equation as a model example, we show that the solution of the initial value problem on the circle can be expressed in terms of the solution of a Riemann-Hilbert problem whose formulation involves quantities which are defined in terms of the initial data alone. Our approach provides an effective solution of the problem on the circle which is conceptually analogous to the solution of the problem on the line via the inverse scattering transform.
引用
收藏
页数:28
相关论文
共 51 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]  
ABLOWITZ MJ, 1983, STUD APPL MATH, V69, P135
[3]  
AKHIEZER NI, 1961, DOKL AKAD NAUK SSSR+, V141, P263
[4]  
[Anonymous], 2005, Lecture Notes in Physics
[6]  
BEALS R, 1985, P SYMP PURE MATH, V43, P45
[7]   LINEAR SPECTRAL PROBLEMS, NON-LINEAR EQUATIONS AND THE DELTA-BAR-METHOD [J].
BEALS, R ;
COIFMAN, RR .
INVERSE PROBLEMS, 1989, 5 (02) :87-130
[8]   THE D-BAR APPROACH TO INVERSE SCATTERING AND NONLINEAR EVOLUTIONS [J].
BEALS, R ;
COIFMAN, RR .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 18 (1-3) :242-249
[9]  
Deconinck B, 2004, MATH COMPUT, V73, P1417
[10]  
Deconinck B., PREPRINT