Construction of binary linear codes via rational function fields

被引:1
|
作者
Jin, Lingfei [1 ]
Kan, Haibin [1 ]
机构
[1] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Sch Comp Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Rational function fields; Binary linear codes; Places;
D O I
10.1007/s10623-016-0252-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
By employing a certain multiplicative group in the rational function field and places of degree one and two, we present a construction of binary linear codes in this paper. One feature is that the minimum distance of the code is bounded via the Hurwitz genus formula of function fields. It turns out that many optimal and best-known binary linear codes are obtained through our construction.
引用
收藏
页码:633 / 638
页数:6
相关论文
共 44 条
  • [1] Construction of binary linear codes via rational function fields
    Lingfei Jin
    Haibin Kan
    Designs, Codes and Cryptography, 2017, 83 : 633 - 638
  • [2] A New Construction of Nonlinear Codes via Rational Function Fields
    Jin, Lingfei
    Ma, Liming
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (02) : 770 - 777
  • [3] Construction of Optimal Locally Repairable Codes via Automorphism Groups of Rational Function Fields
    Jin, Lingfei
    Ma, Liming
    Xing, Chaoping
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (01) : 210 - 221
  • [4] A Construction of Permutation Codes From Rational Function Fields and Improvement to the Gilbert-Varshamov Bound
    Jin, Lingfei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (01) : 159 - 162
  • [5] Construction of Two Classes of Minimal Binary Linear Codes
    Du Xiaoni
    Hu Jinxi
    Jin Wengan
    Sun Yanzhong
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (10) : 3643 - 3649
  • [6] New binary linear codes from algebraic curves
    Leung, KH
    Ling, S
    Xing, CP
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (01) : 285 - 287
  • [7] More on Incorrigible Sets of Binary Linear Codes
    Kong, Lingjun
    Liu, Haiyang
    Ma, Lianrong
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2023, E106A (05) : 863 - 867
  • [8] Edge local complementation and equivalence of binary linear codes
    Lars Eirik Danielsen
    Matthew G. Parker
    Designs, Codes and Cryptography, 2008, 49 : 161 - 170
  • [9] Edge local complementation and equivalence of binary linear codes
    Danielsen, Lars Eirik
    Parker, Matthew G.
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 49 (1-3) : 161 - 170
  • [10] Optimal binary linear codes and Z(4)-linearity
    Encheva, SB
    Jensen, HE
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (04) : 1216 - 1222