A stable three-level explicit spline finite difference scheme for a class of nonlinear time variable order fractional partial differential equations

被引:77
作者
Moghaddam, B. P. [1 ]
Machado, J. A. T. [2 ]
机构
[1] Islamic Azad Univ, Lahijan Branch, Dept Math, Lahijan, Iran
[2] Inst Engn Porto, Dept Elect Engn, Oporto, Portugal
关键词
Time fractional partial differential equations; Initial-boundary value problems; Spline approximation; Finite difference method; Stability and convergence; SUBDIFFUSION EQUATION; DIFFUSION EQUATION; STABILITY; CONVERGENCE; MODELS; FRONT;
D O I
10.1016/j.camwa.2016.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses a stable three -level explicit scheme for a class of nonlinear time variable order fractional partial differential equations. The proposed strategy is based on the linear B-spline approximation of the time variable order fractional derivative in the Caputo sense and the Du Fort-Frankel algorithm. The unconditional stability and the convergence of the scheme are established. Several numerical results confirm the accuracy and efficiency of the novel scheme. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1262 / 1269
页数:8
相关论文
共 31 条
[1]  
Al-Shibani F., 2015, INT J COMPUT METHODS, V12, P1
[2]  
[Anonymous], 2010, NEW TRENDS NANOTECHN
[3]  
[Anonymous], 1979, LECT NOTES BIOMATHEM
[4]   Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation [J].
Chen, Chang-ming ;
Liu, F. ;
Burrage, K. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (02) :754-769
[5]  
Ciesielski M., 2003, COMPUT METHODS MECH, P1
[6]  
Ferras L. L., 2014, INT C COMP SCI ITS A
[7]   IMPULSES AND PHYSIOLOGICAL STATES IN THEORETICAL MODELS OF NERVE MEMBRANE [J].
FITZHUGH, R .
BIOPHYSICAL JOURNAL, 1961, 1 (06) :445-&
[8]  
FITZHUGH R., 1955, Bull. Math. Biophys, V17, P257, DOI [DOI 10.1007/BF02477753, 10.1007/BF02477753]
[9]  
Freidlin M., 1995, SURV APPL MATH, V2, P1
[10]   Time fractional diffusion: A discrete random walk approach [J].
Gorenflo, R ;
Mainardi, F ;
Moretti, D ;
Paradisi, P .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :129-143