Sub-pico-second chirped optical solitons in mono-mode fibers with Kaup-Newell equation by extended trial function method

被引:56
作者
Biswas, Anjan [1 ,2 ,3 ]
Ekici, Mehmet [4 ]
Sonmezoglu, Abdullah [4 ]
Alqahtani, Rubayyi T. [2 ]
机构
[1] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[2] Al Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math & Stat, Riyadh 13318, Saudi Arabia
[3] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[4] Bozok Univ, Fac Sci & Arts, Dept Math, TR-66100 Yozgat, Turkey
来源
OPTIK | 2018年 / 168卷
关键词
Solitons; Chirp; Kaup-Newell model; TRAVELING-WAVE SOLUTIONS; SELF-PHASE MODULATION; GEOMETRY;
D O I
10.1016/j.ijleo.2018.04.069
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper employs extended trial function method to retrieve sub-pico-second optical soliton solutions to Kaup-Newell's equation that is one of the forms of derivative non-linear Schrodinger's equation. Bright and singular soliton solutions are revealed with this algorithm. (C) 2018 Elsevier GmbH. All rights reserved.
引用
收藏
页码:208 / 216
页数:9
相关论文
共 15 条
[1]   NON-LINEAR ASYMMETRIC SELF-PHASE MODULATION AND SELF-STEEPENING OF PULSES IN LONG OPTICAL-WAVEGUIDES [J].
ANDERSON, D ;
LISAK, M .
PHYSICAL REVIEW A, 1983, 27 (03) :1393-1398
[2]   Soliton perturbation theory for Alfven waves in plasmas [J].
Biswas, A .
PHYSICS OF PLASMAS, 2005, 12 (02) :022306-1
[3]  
Biswas A., 2018, OPTIK
[4]   Solitons in magneto-optic waveguides by extended trial function scheme [J].
Ekici, Mehmet ;
Zhou, Qin ;
Sonmezoglu, Abdullah ;
Moshokoa, Seithuti P. ;
Ullah, Malik Zaka ;
Biswas, Anjan ;
Belic, Milivoj .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 107 :197-218
[5]   Nematicons in liquid crystals by extended trial equation method [J].
Ekici, Mehmet ;
Mirzazadeh, Mohammad ;
Sonmezoglu, Abdullah ;
Ullah, Malik Zaka ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Biswas, Anjan ;
Belic, Milivoj .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2017, 26 (01)
[6]  
fin-Chun H., 2008, COMMUN THEOR PHYS, V50, P1369
[7]   Geometry of the Kaup-Newell equation [J].
Guha, P .
REPORTS ON MATHEMATICAL PHYSICS, 2002, 50 (01) :1-12
[8]  
Liu CS, 2008, COMMUN THEOR PHYS, V49, P153, DOI 10.1088/0253-6102/49/1/33
[9]   Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations [J].
Liu, Cheng-shi .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (02) :317-324
[10]  
Liu W, 2018, ROM REP PHYS, V70