Continuous microcarrier-based cell culture in a benchtop microfluidic bioreactor

被引:24
作者
Abeille, F. [1 ,2 ,3 ,4 ]
Mittler, F. [1 ,2 ,3 ,4 ]
Obeid, P. [1 ,3 ,4 ]
Huet, M. [1 ,2 ]
Kermarrec, F. [1 ,3 ,4 ]
Dolega, M. E. [1 ,3 ,4 ]
Navarro, F. [1 ,2 ]
Pouteau, P. [1 ,2 ]
Icard, B. [1 ,2 ]
Gidrol, X. [1 ,3 ,4 ]
Agache, V. [1 ,2 ]
Picollet-D'hahan, N. [1 ,3 ,4 ]
机构
[1] Univ Grenoble Alpes, F-38000 Grenoble, France
[2] CEA Grenoble, LETI, F-38054 Grenoble 9, France
[3] CEA Grenoble, iRTSV BGE, F-38000 Grenoble, France
[4] INSERM, BGE, F-38000 Grenoble, France
关键词
HOLLOW SQUARE; MEMBRANE; DEVICES; GROWTH;
D O I
10.1039/c4lc00570h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microfluidic bioreactors are expected to impact cell therapy and biopharmaceutical production due to their ability to control cellular microenvironments. This work presents a novel approach for continuous cell culture in a microfluidic system. Microcarriers (i.e., microbeads) are used as growth support for anchorage-dependent mammalian cells. This approach eases the manipulation of cells within the system and enables harmless extraction of cells. Moreover, the microbioreactor uses a perfusion function based on the biocompatible integration of a porous membrane to continuously feed the cells. The perfusion rate is optimized through simulations to provide a stable biochemical environment. Thermal management is also addressed to ensure a homogeneous bioreactor temperature. Eventually, incubator-free cell cultures of Drosophila S2 and PC3 cells are achieved over the course of a week using this bioreactor. In future applications, a more efficient alternative to harvesting cells from microcarriers is also anticipated as suggested by our positive results from the microcarrier digestion experiments.
引用
收藏
页码:3510 / 3518
页数:9
相关论文
共 50 条
[11]   Intensification of Vero cell adherence to microcarrier particles during cultivation in a wave bioreactor [J].
Mazhed, Z. K. ;
Vasilenko, V. E. ;
Siniugina, A. A. ;
Kaa, K. V. ;
Motov, A. S. ;
Pokidova, K. O. ;
Ivin, Y. Y. ;
Piniaeva, A. N. ;
Khapchaev, Y. K. ;
Chernov, K. A. ;
Ishmukhametov, A. A. .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2025, 13
[12]   A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue [J].
Carmelo, Joana G. ;
Fernandes-Platzgummer, Ana ;
Diogo, Maria Margarida ;
da Silva, Claudia Lobato ;
Cabral, Joaquim M. S. .
BIOTECHNOLOGY JOURNAL, 2015, 10 (08) :1235-1247
[13]   Modulation of Mesenchymal Stromal Cell Characteristics by Microcarrier Culture in Bioreactors [J].
Hupfeld, Julia ;
Gorr, Ingo H. ;
Schwald, Christian ;
Beaucamp, Nicola ;
Wiechmann, Kornelius ;
Huss, Karin Kuentzer Ralf ;
Rieger, Bernhard ;
Neubauer, Markus ;
Wegmeyer, Heike .
BIOTECHNOLOGY AND BIOENGINEERING, 2014, 111 (11) :2290-2302
[14]   Digital Microfluidic Cell Culture [J].
Ng, Alphonsus H. C. ;
Li, Bingyu Betty ;
Chamberlain, M. Dean ;
Wheeler, Aaron R. .
ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, VOL 17, 2015, 17 :91-112
[15]   Pumps for microfluidic cell culture [J].
Byun, Chang Kyu ;
Abi-Samra, Kameel ;
Cho, Yoon-Kyoung ;
Takayama, Shuichi .
ELECTROPHORESIS, 2014, 35 (2-3) :245-257
[16]   Biological implications of polydimethylsiloxane-based microfluidic cell culture [J].
Regehr, Keil J. ;
Domenech, Maribella ;
Koepsel, Justin T. ;
Carver, Kristopher C. ;
Ellison-Zelski, Stephanie J. ;
Murphy, William L. ;
Schuler, Linda A. ;
Alarid, Elaine T. ;
Beebe, David J. .
LAB ON A CHIP, 2009, 9 (15) :2132-2139
[17]   Bioreactor concepts for cell culture-based viral vaccine production [J].
Gallo-Ramirez, Lili Esmeralda ;
Nikolay, Alexander ;
Genzel, Yvonne ;
Reichl, Udo .
EXPERT REVIEW OF VACCINES, 2015, 14 (09) :1181-1195
[18]   A whole-thermoplastic microfluidic chip with integrated on-chip micropump, bioreactor and oxygenator for cell culture applications [J].
Ameri, Amir Reza ;
Imanparast, Armin ;
Passandideh-Fard, Mohammad ;
Shaegh, Seyed Ali Mousavi .
ANALYTICA CHIMICA ACTA, 2022, 1221
[19]   A novel method of cell culture based on the microfluidic chip for regulation of cell density [J].
Zhang, Fei ;
Zhang, Rongbiao ;
Wei, Mingji ;
Zhang, Yecheng .
BIOTECHNOLOGY AND BIOENGINEERING, 2021, 118 (02) :852-862
[20]   Metabolite profiling of microfluidic cell culture conditions for droplet based screening [J].
Bjork, Sara M. ;
Sjostrom, Staffan L. ;
Andersson-Svahn, Helene ;
Joensson, Haakan N. .
BIOMICROFLUIDICS, 2015, 9 (04)