Risk-difference curves can be used to communicate time-dependent effects of adjuvant therapies for early stage cancer

被引:10
作者
Coory, Michael [1 ,2 ]
Lamb, Karen E. [1 ,2 ]
Sorich, Michael [3 ]
机构
[1] Royal Childrens Hosp, Murdoch Childrens Res Inst, Clin Epidemiol & Biostat Unit, Melbourne, Vic 3052, Australia
[2] Royal Childrens Hosp, Dept Pediat, Melbourne, Vic 3052, Australia
[3] Flinders Univ S Australia, Sch Med, Dept Clin Pharmacol, Bedford Pk, SA 5042, Australia
基金
英国医学研究理事会;
关键词
Survival; Hazard ratio; Risk-difference curve; Kaplan-Meier curves; Time-dependent treatment effect; Difference-in-mean survival; Difference-in-median survival; Relative treatment effect; Absolute treatment effect; SURVIVAL CURVES; CLINICAL-TRIALS; EFFICACY; HAZARDS; PATIENT; VACCINE; TREAT;
D O I
10.1016/j.jclinepi.2014.03.006
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objectives: To describe the use of risk-difference curves for communicating time-dependent absolute treatment effects. Study Design and Setting: Three examples based on individual patient data meta-analyses for adjuvant treatments for early-stage breast cancer are presented. Unit record datasets were re-created from the published Kaplan-Meier curves and numbers at risk or person-years at risk. Risk-difference curves, with corresponding 95% confidence bands, are presented and discussed. Results: Risk-difference curves are useful for communicating the results from trials of adjuvant treatments for early-stage cancer when standard measures of the absolute treatment effect for survival data (ie, difference-in-mean and difference-in-median survival) can be difficult to estimate. They also avoid the problem of "evolving selection bias", which can affect interval-specific hazard ratio (HR)s in trials with long follow-up and where the participants are heterogeneous with respect to prognosis. Conclusion: Clinical epidemiologists should consider reporting risk-difference curves in addition to Kaplan-Meier curves and the HR. Crown Copyright (C) 2014 Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:966 / 972
页数:7
相关论文
共 31 条
[1]   Calculating the number needed to treat for trials where the outcome is time to an event [J].
Altman, DG ;
Andersen, PK .
BRITISH MEDICAL JOURNAL, 1999, 319 (7223) :1492-1495
[2]  
[Anonymous], 2019, R: A language for environment for statistical computing
[3]  
[Anonymous], ENGAUGE DIGITIZER DI
[4]   Absolute risk reductions and numbers needed to treat can be obtained from adjusted survival models for time-to-event outcomes [J].
Austin, Peter C. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2010, 63 (01) :46-55
[5]   High-Dose Chemotherapy With Autologous Stem-Cell Support As Adjuvant Therapy in Breast Cancer: Overview of 15 Randomized Trials [J].
Berry, Donald A. ;
Ueno, Naoto T. ;
Johnson, Marcella M. ;
Lei, Xiudong ;
Caputo, Jean ;
Rodenhuis, Sjoerd ;
Peters, William P. ;
Leonard, Robert C. ;
Barlow, William E. ;
Tallman, Martin S. ;
Bergh, Jonas ;
Nitz, Ulrike A. ;
Gianni, Alessandro M. ;
Basser, Russell L. ;
Zander, Axel R. ;
Coombes, R. Charles ;
Roche, Henri ;
Tokuda, Yutaka ;
de Vries, Elisabeth G. E. ;
Hortobagyi, Gabriel N. ;
Crown, John P. ;
Pedrazzoli, Paolo ;
Bregni, Marco ;
Demirer, Taner .
JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (24) :3214-3223
[6]   The Hazards of Endpoints [J].
Berry, Donald A. .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2010, 102 (18) :1376-1377
[7]   With maturity comes confidence: EBCTCG tamoxifen update [J].
Chia, Stephen K. ;
Wolff, Antonio C. .
LANCET, 2011, 378 (9793) :747-749
[8]   Relevance of breast cancer hormone receptors and other factors to the efficacy of adjuvant tamoxifen: patient-level meta-analysis of randomised trials [J].
Davies, C. ;
Godwin, J. ;
Gray, R. ;
Clarke, M. ;
Darby, S. ;
McGale, P. ;
Wang, Y. C. ;
Peto, R. ;
Pan, H. C. ;
Cutter, D. ;
Taylor, C. ;
Ingle, J. .
LANCET, 2011, 378 (9793) :771-784
[9]   Meta-analysis of pairs of survival curves under heterogeneity: A Poisson correlated gamma-frailty approach [J].
Fiocco, M. ;
Putter, H. ;
van Houwelingen, J. C. .
STATISTICS IN MEDICINE, 2009, 28 (30) :3782-3797
[10]   Frailty models: Applications to biomedical and genetic studies [J].
Govindarajulu, Usha S. ;
Lin, Haiqun ;
Lunetta, Kathryn L. ;
D'Agostino, R. B., Sr. .
STATISTICS IN MEDICINE, 2011, 30 (22) :2754-2764