Large Metasurface Aperture for Millimeter Wave Computational Imaging at the Human-Scale

被引:221
作者
Gollub, J. N. [1 ,2 ]
Yurduseven, O. [1 ,2 ]
Trofatter, K. P. [1 ,2 ]
Arnitz, D. [3 ]
Imani, M. F. [1 ,2 ]
Sleasman, T. [1 ,2 ]
Boyarsky, M. [1 ,2 ]
Rose, A. [4 ]
Pedross-Engel, A.
Odabasi, H. [1 ,2 ]
Zvolensky, T. [1 ,2 ]
Lipworth, G. [1 ,2 ]
Brady, D.
Marks, D. L. [1 ,2 ]
Reynolds, M. S. [3 ,5 ]
Smith, D. R. [1 ,2 ]
机构
[1] Duke Univ, Ctr Metamat & Integrated Plasmon, Box 90291, Durham, NC 27708 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
[3] Univ Washington, Dept Elect Engn, Seattle, WA 98195 USA
[4] Evolv Technol, 200 West St, Waltham, MA 02451 USA
[5] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
关键词
SYNTHETIC-APERTURE; METAMATERIAL APERTURES; SENSOR; POLARIZATION; RESOLUTION; ARRAYS;
D O I
10.1038/srep42650
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate a low-profile holographic imaging system at millimeter wavelengths based on an aperture composed of frequency-diverse metasurfaces. Utilizing measurements of spatially-diverse field patterns, diffraction-limited images of human-sized subjects are reconstructed. The system is driven by a single microwave source swept over a band of frequencies (17.5-26.5 GHz) and switched between a collection of transmit and receive metasurface panels. High fidelity image reconstruction requires a precise model for each field pattern generated by the aperture, as well as the manner in which the field scatters from objects in the scene. This constraint makes scaling of computational imaging systems inherently challenging for electrically large, coherent apertures. To meet the demanding requirements, we introduce computational methods and calibration approaches that enable rapid and accurate imaging performance.
引用
收藏
页数:9
相关论文
共 48 条
[1]   A Novel Fully Electronic Active Real-Time Imager Based on a Planar Multistatic Sparse Array [J].
Ahmed, Sherif Sayed ;
Schiessl, Andreas ;
Schmidt, Lorenz-Peter .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2011, 59 (12) :3567-3576
[2]  
Amin M. G, 2016, THROUGH THE WALL RAD
[3]  
[Anonymous], 2009, Optical imaging and spectroscopy
[4]   A fast multilevel domain decomposition algorithm for radar imaging [J].
Boag, A .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2001, 49 (04) :666-671
[5]   Microwave imaging via space-time beamforming for early detection of breast cancer [J].
Bond, EJ ;
Li, X ;
Hagness, SC ;
Van Veen, BD .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (08) :1690-1705
[6]   SYNTHETIC APERTURE RADAR [J].
BROWN, WM .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1967, AES3 (02) :217-&
[7]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[8]   A single-pixel terahertz imaging system based on compressed sensing [J].
Chan, Wai Lam ;
Charan, Kriti ;
Takhar, Dharmpal ;
Kelly, Kevin F. ;
Baraniuk, Richard G. ;
Mittleman, Daniel M. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[9]  
Charvat G. L., 2012, IEEE RAD C
[10]   Refocusing through building walls using synthetic aperture radar [J].
Dehmollaian, Mojtaba ;
Sarabandi, Kamal .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (06) :1589-1599