Autonomous Artificial Intelligence in Diabetic Retinopathy: From Algorithm to Clinical Application

被引:18
作者
Channa, Roomasa [1 ,2 ,3 ]
Wolf, Risa [4 ]
Abramoff, Michael D. [5 ,6 ,7 ]
机构
[1] Baylor Coll Med, Dept Ophthalmol, Houston, TX 77030 USA
[2] Michael DeBakey Vet Affairs Hosp, Houston, TX USA
[3] Johns Hopkins Univ, Wilmer Eye Inst, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Pediat Endocrinol, Baltimore, MD USA
[5] Univ Iowa, Ophthalmol & Visual Sci, Iowa City, IA USA
[6] VA Med Ctr, Iowa City, IA USA
[7] IDx, Coralville, IA USA
关键词
artificial intelligence; augmented intelligence; clinical practice; implementation; regulation;
D O I
10.1177/1932296820909900
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Artificial intelligence (AI)-based algorithms are rapidly entering the health care field and have the potential to improve patient care. Our article focuses on the use of autonomous AI algorithms (ie, algorithms that can make clinical decisions without human oversight) in diagnostic imaging. In this article, we have used the example of diabetic retinopathy screening to highlight some important aspects to be considered by developers, policymakers, and end users when bringing autonomous AI algorithms into clinical practice. We have divided these aspects into (1) following the principles of safety, efficacy, and equity in all phases of development and implementation of the algorithm; (2) regulatory processes involving medical records, medical liability, and patient privacy; (3) cost and billing; and (4) the role of health care providers.
引用
收藏
页码:695 / 698
页数:4
相关论文
共 17 条
[1]  
AAO, 2019, CPT COD NEW TECHN ID
[2]   Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices [J].
Abramoff, Michael D. ;
Lavin, Philip T. ;
Birch, Michele ;
Shah, Nilay ;
Folk, James C. .
NPJ DIGITAL MEDICINE, 2018, 1
[3]  
AMA, 2019, AUGM INT HLTH CAR H
[4]   Eye Care Utilization Among Insured People With Diabetes in the US, 2010-2014 [J].
Benoit, Stephen R. ;
Swenor, Bonnielin ;
Geiss, Linda S. ;
Gregg, Edward W. ;
Saaddine, Jinan B. .
DIABETES CARE, 2019, 42 (03) :427-433
[5]   Advances in artificial pancreas systems [J].
Boughton, Charlotte K. ;
Hovorka, Roman .
SCIENCE TRANSLATIONAL MEDICINE, 2019, 11 (484)
[6]   Real-World Use of Do-It-Yourself Artificial Pancreas Systems in Children and Adolescents With Type 1 Diabetes: Online Survey and Analysis of Self-Reported Clinical Outcomes [J].
Braune, Katarina ;
O'Donnell, Shane ;
Cleal, Bryan ;
Lewis, Dana ;
Tappe, Adrian ;
Willaing, Ingrid ;
Hauck, Bastian ;
Raile, Klemens .
JMIR MHEALTH AND UHEALTH, 2019, 7 (07)
[7]   Artificial Intelligence for Diabetes Management and Decision Support: Literature Review [J].
Contreras, Ivan ;
Vehi, Josep .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2018, 20 (05)
[8]  
Dagliati Arianna, 2018, J Diabetes Sci Technol, V12, P295, DOI 10.1177/1932296817706375
[9]   Influence of computer-aided detection on performance of screening mammography [J].
Fenton, Joshua J. ;
Taplin, Stephen H. ;
Carney, Patricia A. ;
Abraham, Linn ;
Sickles, Edward A. ;
D'Orsi, Carl ;
Berns, Eric A. ;
Cutter, Gary ;
Hendrick, R. Edward ;
Barlow, William E. ;
Elmore, Joann G. .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (14) :1399-1409
[10]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410