Physiological and proteomic alterations in rice (Oryza sativa L.) seedlings under hexavalent chromium stress

被引:57
|
作者
Zeng, Fanrong [1 ]
Wu, Xiaojian [1 ]
Qiu, Boyin [1 ]
Wu, Feibo [1 ]
Jiang, Lixi [1 ]
Zhang, Guoping [1 ]
机构
[1] Zhejiang Univ, Dept Agron, Coll Agr & Biotechnol, Hangzhou 310058, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Compartmentalization; Hexavalent chromium; Oryza sativa; Oxidative stress; Proteomics; REVERSIBLY GLYCOSYLATED POLYPEPTIDES; CELL-WALL BIOSYNTHESIS; ULTRASTRUCTURAL-CHANGES; GLUTAMINE-SYNTHETASE; OXIDATIVE STRESS; PEA NODULES; EXPRESSION; PROTEINS; ARABIDOPSIS; TOXICITY;
D O I
10.1007/s00425-014-2077-3
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rice plants employ two strategies to cope with Cr toxicity: immobilizing Cr ions into cell walls to reduce its translocation and activating antioxidant defense to mitigate Cr-induced oxidative stress. The investigation aimed at understanding the physiological and proteomic responses of rice seedlings to hexavalent chromium (Cr6+) stress was conducted using two rice genotypes, which differ in Cr tolerance and accumulation. Cr toxicity (200 A mu M) heavily increased the accumulation of H2O2 and , enhanced lipid peroxidation, decreased cell viability and consequently inhibited rice plant growth. Proteomic analyses suggest that the response of rice proteome to Cr stress is genotype- and Cr dosage-dependent and tissue specific. Sixty-four proteins, which show more than fourfold difference under either two Cr levels, have been successfully identified. They are involved in a range of cellular processes, including cell wall synthesis, energy production, primary metabolism, electron transport and detoxification. Two proteins related to cell wall structure, NAD-dependent epimerase/dehydratase and reversibly glycosylated polypeptide were greatly up-regulated by Cr stress. Their enhancements coupled with callose accumulation by Cr suggest that cell wall is an important barrier for rice plants to resist Cr stress. Some enzymes involved in antioxidant defense, such as ferredoxin-NADP reductase, NADP-isocitrate dehydrogenase, glyoxalase I (Gly I) and glutamine synthetase 1 (GS1) have also been identified in response to Cr stress. However, they were only detected in Cr-tolerant genotype, indicating the genotypic difference in the capacity of activating the defense system to fight against Cr-induced oxidative stress. Overall, two strategies in coping with Cr stress in rice plants can be hypothesized: (i) immobilizing Cr ions into cell walls to reduce its translocation and (ii) activating antioxidant defense to mitigate Cr-induced oxidative stress.
引用
收藏
页码:291 / 308
页数:18
相关论文
共 50 条
  • [21] Ammonium nutrition increases water absorption in rice seedlings (Oryza sativa L.) under water stress
    Yingxu Gao
    Yong Li
    Xiuxia Yang
    Haijun Li
    Qirong Shen
    Shiwei Guo
    Plant and Soil, 2010, 331 : 193 - 201
  • [22] Phosphoprotein Profile of Rice (Oryza sativa L.) Seedlings under Osmotic Stress after Pretreatment with Chitosan
    Pongprayoon, Wasinee
    Panya, Atikorn
    Jaresitthikunchai, Janthima
    Phaonakrop, Narumon
    Roytrakul, Sittiruk
    PLANTS-BASEL, 2022, 11 (20):
  • [23] Physiological and proteomic analysis of rice (Oryza sativa L.) in flag leaf during flowering stage and milk stage under drought stress
    Yuwen Wang
    Chao Xu
    Beibei Zhang
    Min Wu
    Guoxiang Chen
    Plant Growth Regulation, 2017, 82 : 201 - 218
  • [24] Physiological and proteomic analysis of rice (Oryza sativa L.) in flag leaf during flowering stage and milk stage under drought stress
    Wang, Yuwen
    Xu, Chao
    Zhang, Beibei
    Wu, Min
    Chen, Guoxiang
    PLANT GROWTH REGULATION, 2017, 82 (02) : 201 - 218
  • [25] Drought Stress in Rice (Oryza sativa L.)
    Shrestha, Jiban
    RESEARCH ON WORLD AGRICULTURAL ECONOMY, 2022, 3 (01):
  • [26] Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress
    Shukla, Nandani
    Awasthi, R. P.
    Rawat, Laxmi
    Kumar, J.
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2012, 54 : 78 - 88
  • [27] Role of phosphate in drought stress regulation in developing rice (Oryza sativa L.) seedlings
    Imran Hussian Barbhuiya
    Debojyoti Moulick
    Akbar Hossian
    Shuvasish Choudhury
    Cereal Research Communications, 2024, 52 : 531 - 544
  • [28] Role of phosphate in drought stress regulation in developing rice (Oryza sativa L.) seedlings
    Barbhuiya, Imran Hussian
    Moulick, Debojyoti
    Hossian, Akbar
    Choudhury, Shuvasish
    CEREAL RESEARCH COMMUNICATIONS, 2024, 52 (02) : 531 - 544
  • [29] Seed Priming Improves Chilling Stress Tolerance in Rice ( Oryza sativa L.) Seedlings
    Tahjib-Ul-Arif, Md.
    Asaduzzaman, Md
    Shirazy, Bir Jahangir
    Khan, Md. Shihab Uddine
    Rahman, A. M. Sajedur
    Murata, Yoshiyuki
    Hamed, Sozan Abdel
    Latef, Arafat Abdel Hamed Abdel
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2024, 93 (11) : 3013 - 3027
  • [30] Evaluation of nitrogen supply on arsenic stress responses of rice (Oryza sativa L.) seedlings
    Srivastava, S.
    ENVIRONMENTAL ARSENIC IN A CHANGING WORLD (AS2018), 2018, : 553 - 554