Least-squares symmetric and Skew anti-symmetric solutions of the inconsistent matrix equation AX=B with a submatrix constraint

被引:0
作者
Lei, Yuan [1 ]
Liao, An-Ping [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Peoples R China
来源
Advances in Matrix Theory and Applications | 2006年
关键词
symmetric and skew anti-symmetric matrix; submatrix constraint; least-squares solution;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is mainly concerned the least-squares solutions of the matrix equation AX = B for symmetric and skew anti-symmetric matrices with a submatrix constraint, where A and B are given matrices of suitable sizes. Moreover, in the corresponding solution set, the analytical expression of the best approximation to a given matrix X* is derived.
引用
收藏
页码:190 / 193
页数:4
相关论文
共 9 条
[1]  
Aubin J.P., 1979, APPL FUNCTIONAL ANAL
[2]  
Friswell M., 1995, FINITE ELEMENT MODEL, V38
[3]   PERTURBATION ANALYSIS OF THE CANONICAL CORRELATIONS OF MATRIX PAIRS [J].
GOLUB, GH ;
ZHA, HY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 210 :3-28
[4]  
GOLUB GH, 1995, MATRIX COMPUTATIONS
[5]   TOWARDS A GENERALIZED SINGULAR VALUE DECOMPOSITION [J].
PAIGE, CC ;
SAUNDERS, MA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1981, 18 (03) :398-405
[6]  
WANG RS, 2003, FUNCTIONAL ANAL OPTI
[7]   The least-squares solutions of inconsistent matrix equation over symmetric and antipersymmetric matrices [J].
Xie, DX ;
Sheng, YP ;
Hu, XY .
APPLIED MATHEMATICS LETTERS, 2003, 16 (04) :589-598
[8]  
Xu Z., 1999, FAST ALGORITHMS MATR
[9]  
ZHANG L, 1986, HUNAN ANN MATH, V6, P16