Pitman closeness of sample median to population median

被引:25
作者
Balakrishnan, N. [2 ]
Iliopoulos, G. [3 ]
Keating, J. P. [1 ]
Mason, R. L. [4 ]
机构
[1] Univ Texas San Antonio, San Antonio, TX 78249 USA
[2] McMaster Univ, Hamilton, ON L8S 4K1, Canada
[3] Univ Piraeus, Piraeus 18545, Greece
[4] SW Res Inst, San Antonio, TX 78228 USA
关键词
D O I
10.1016/j.spl.2009.04.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, Pitman closeness of order statistics to the median of a distribution is discussed. In particular, it is shown that the sample median is the Pitman-closest order statistic to the population median in some general situations, and expressions for probabilities of closeness are also derived. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1759 / 1766
页数:8
相关论文
共 8 条
[1]  
Arnold B. C., 2008, Classics in Applied Mathematics
[2]   Estimating the center of symmetry: Is it always better to use larger sample sizes? [J].
Bose, Sudip .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (12) :4194-4203
[3]  
David Herbert A, 2004, Order statistics
[4]   MEDIAN UNBIASEDNESS AND PITMAN CLOSENESS [J].
GHOSH, M ;
SEN, PK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (408) :1089-1091
[5]  
Keating J.P., 1993, Pitman's measure of closeness: a comparison of statistical estimators
[6]   KARLINS COROLLARY - A TOPOLOGICAL APPROACH TO PITMANS MEASURE [J].
KEATING, JP .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (11) :3729-3750
[7]   A simple improvement of the Kaplan-Meier estimator [J].
Rossa, A ;
Zielinski, R .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (01) :147-158
[8]   The Hajek convolution theorem and empirical Bayes estimation: parametrics, semiparametrics and nonparametrics [J].
Sen, PK .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 91 (02) :541-556