Improved l-ornithine production in Corynebacterium crenatum by introducing an artificial linear transacetylation pathway

被引:17
作者
Shu, Qunfeng [1 ]
Xu, Meijuan [1 ]
Li, Jing [1 ]
Yang, Taowei [1 ]
Zhang, Xian [1 ]
Xu, Zhenghong [1 ]
Rao, Zhiming [1 ]
机构
[1] Jiangnan Univ, Sch Biotechnol, Key Lab Ind Biotechnol, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
L-Ornithine; Corynebacterium crenatum; Ornithine acetyltransferase; Linear transacetylation pathway; L-ARGININE PRODUCTION; ESCHERICHIA-COLI; METABOLIC PATHWAY; GLUTAMICUM; ACETYLTRANSFERASE; TRANSCRIPTION; BIOSYNTHESIS; EVOLUTION; GENES; ARGA;
D O I
10.1007/s10295-018-2037-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
l-Ornithine is a non-protein amino acid with extensive applications in the food and pharmaceutical industries. In this study, we performed metabolic pathway engineering of an l-arginine hyper-producing strain of Corynebacterium crenatum for L-ornithine production. First, we amplified the L-ornithine biosynthetic pathway flux by blocking the competing branch of the pathway. To enhance L-ornithine synthesis, we performed site-directed mutagenesis of the ornithine-binding sites to solve the problem of l-ornithine feedback inhibition for ornithine acetyltransferase. Alternatively, the genes argA from Escherichia coli and argE from Serratia marcescens, encoding the enzymes N-acetyl glutamate synthase and N-acetyl-l-ornithine deacetylase, respectively, were introduced into Corynebacterium crenatum to mimic the linear pathway of L-ornithine biosynthesis. Fermentation of the resulting strain in a 5-L bioreactor allowed a dramatically increased production of L-ornithine, 40.4 g/L, with an overall productivity of 0.673 g/L/h over 60 h. This demonstrates that an increased level of transacetylation is beneficial for L-ornithine biosynthesis.
引用
收藏
页码:393 / 404
页数:12
相关论文
共 46 条
[1]   INCREASED L-ORNITHINE PRODUCTION BY AN ARG MUTANT OF ACINETOBACTER-LWOFFI [J].
AMUND, OO ;
MACKINNON, G ;
HIGGINS, IJ .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1983, 17 (04) :252-253
[2]   The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling [J].
Arnold, K ;
Bordoli, L ;
Kopp, J ;
Schwede, T .
BIOINFORMATICS, 2006, 22 (02) :195-201
[3]   SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information [J].
Biasini, Marco ;
Bienert, Stefan ;
Waterhouse, Andrew ;
Arnold, Konstantin ;
Studer, Gabriel ;
Schmidt, Tobias ;
Kiefer, Florian ;
Cassarino, Tiziano Gallo ;
Bertoni, Martino ;
Bordoli, Lorenza ;
Schwede, Torsten .
NUCLEIC ACIDS RESEARCH, 2014, 42 (W1) :W252-W258
[4]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[5]  
Casteele MVD, 1990, J GEN MICROBIOL, V136, P1177
[6]  
Chen YJ, 2013, NAT METHODS, V10, P659, DOI [10.1038/nmeth.2515, 10.1038/NMETH.2515]
[7]   Production of L-ornithine by arginine auxotrophic mutants of Brevibacterium ketoglutamicum in dual substrate-limited continuous culture [J].
Choi, DK ;
Ryu, WS ;
Choi, CY ;
Park, YH .
JOURNAL OF FERMENTATION AND BIOENGINEERING, 1996, 81 (03) :216-219
[8]  
Delano W.L., 2002, THE PYMOL MOLECULAR
[9]   Functional characterization of a novel ArgA from Mycobacterium tuberculosis [J].
Errey, JC ;
Blanchard, JS .
JOURNAL OF BACTERIOLOGY, 2005, 187 (09) :3039-3044
[10]  
Green M.R., 2001, ANAL BIOCHEM, V186, P182