On the homotopy types of compact Kahler and complex projective manifolds

被引:52
作者
Voisin, C [1 ]
机构
[1] CNRS, Inst Math Jussieu, UMR 7586, F-75252 Paris 05, France
关键词
Galois Group; Abelian Variety; Homotopy Type; Exceptional Divisor; Hodge Structure;
D O I
10.1007/s00222-003-0352-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:329 / 343
页数:15
相关论文
共 50 条
[21]   Compact Manifolds Covered by a Torus [J].
Jean-Pierre Demailly ;
Jun-Muk Hwang ;
Thomas Peternell .
Journal of Geometric Analysis, 2008, 18 :324-340
[22]   Four-manifolds with π1–free second homotopy [J].
Fulvia Spaggiari .
manuscripta mathematica, 2003, 111 :303-320
[23]   Compact open topology and CW homotopy type [J].
Smrekar, J .
TOPOLOGY AND ITS APPLICATIONS, 2003, 130 (03) :291-304
[24]   Matrix problems and stable homotopy types of polyhedra [J].
Drozd, Yuriy A. .
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2004, 2 (03) :420-447
[25]   Double Groupoids and Homotopy 2-types [J].
Martinez Cegarra, Antonio ;
Heredia, Benjamin A. ;
Remedios, Josue .
APPLIED CATEGORICAL STRUCTURES, 2012, 20 (04) :323-378
[26]   The homotopy types of SO(4)-gauge groups [J].
Kishimoto, Daisuke ;
Membrillo-Solis, Ingrid ;
Theriault, Stephen .
EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (03) :1245-1252
[27]   The homotopy types of Sp(3)-gauge groups [J].
Cutler, Tyrone .
TOPOLOGY AND ITS APPLICATIONS, 2018, 236 :44-58
[28]   Double Groupoids and Homotopy 2-types [J].
Antonio Martínez Cegarra ;
Benjamín A. Heredia ;
Josué Remedios .
Applied Categorical Structures, 2012, 20 :323-378
[29]   Polyhedra dominating finitely many different homotopy types [J].
Kolodziejczyk, D .
TOPOLOGY AND ITS APPLICATIONS, 2005, 146 :583-592
[30]   The homotopy types of G2-gauge groups [J].
Kishimoto, Daisuke ;
Theriault, Stephen ;
Tsutaya, Mitsunobu .
TOPOLOGY AND ITS APPLICATIONS, 2017, 228 :92-107