Extended k-Gamma and k-Beta Functions of Matrix Arguments

被引:23
|
作者
Khammash, Ghazi S. [1 ]
Agarwal, Praveen [2 ,3 ,4 ]
Choi, Junesang [5 ]
机构
[1] Al Aqsa Univ, Dept Math, Gaza Strip 79779, Palestine
[2] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
[3] Inst Math & Math Modeling, Alma Ata 050010, Kazakhstan
[4] Harish Chandra Res Inst, Chhatnag Rd, Allahabad 211019, Uttar Pradesh, India
[5] Dongguk Univ, Dept Math, Gyeongju 38066, South Korea
基金
新加坡国家研究基金会;
关键词
k-gamma function; k-beta function; gamma function of a matrix argument; beta function of matrix arguments; extended gamma function of a matrix argument; extended beta function of matrix arguments; k-gamma function of a matrix argument; k-beta function of matrix arguments; extended k-gamma function of a matrix argument; extended k-beta function of matrix arguments; POLYNOMIALS; EXTENSION;
D O I
10.3390/math8101715
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Various k-special functions such as k-gamma function, k-beta function and k-hypergeometric functions have been introduced and investigated. Recently, the k-gamma function of a matrix argument and k-beta function of matrix arguments have been presented and studied. In this paper, we aim to introduce an extended k-gamma function of a matrix argument and an extended k-beta function of matrix arguments and investigate some of their properties such as functional relations, inequality, integral formula, and integral representations. Also an application of the extended k-beta function of matrix arguments to statistics is considered.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 12 条
  • [1] BOUNDS FOR K-GAMMA AND K-BETA FUNCTIONS
    Kokologiannaki, C. G.
    Sourla, V. D.
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2013, 4 (03) : 1 - 5
  • [2] A New Representation of the k-Gamma Functions
    Tassaddiq, Asifa
    MATHEMATICS, 2019, 7 (02)
  • [3] Two double inequalities for k-gamma and k-Riemann zeta functions
    Zhang, Jing
    Shi, Huan-Nan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [4] The Gauss product and Raabe's integral for k-gamma functions
    Sandor, Jozsef
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2020, 26 (04) : 122 - 127
  • [5] A Note on k-Gamma Function and Pochhammer k-Symbol
    Mubeen, Shahid
    Rehman, Abdur
    JOURNAL OF INFORMATICS AND MATHEMATICAL SCIENCES, 2014, 6 (02): : 93 - 107
  • [6] Extended matrix variate gamma and beta functions
    Nagar, Daya K.
    Roldan-Correa, Alejandro
    Gupta, Arjun K.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 122 : 53 - 69
  • [7] Properties of k-beta function with several variables
    Rehman, Abdur
    Mubeen, Shahid
    Safdar, Rabia
    Sadiq, Naeem
    OPEN MATHEMATICS, 2015, 13 : 308 - 320
  • [8] Logarithmically Complete Monotonicity of Certain Ratios Involving the k-Gamma Function
    Nantomah, Kwara
    Yin, Li
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2018, 9 (04): : 559 - 565
  • [9] Numerical calculation of the extension of k-beta function and some new extensions by using two parameter k-Mittag-Leffler function
    Laxmi, Parik
    Jain, Shilpi
    Agarwal, Praveen
    Milovanovic, Gradimir, V
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 479
  • [10] Inequalities concerning the (p, k)-gamma and (p, k)-polygamma functions
    Nantomah, Kwara
    NOTE DI MATEMATICA, 2018, 38 (02): : 93 - 104